Morphological and physical properties of kefiran-whey protein isolate bionanocomposite films reinforced with Al2O3 nanoparticles

2020 ◽  
Vol 26 (8) ◽  
pp. 666-675
Author(s):  
Zahra Moradi

Considering environmental pollution caused by the non-biodegradable polymers used in food packaging, developing and enhancing the properties of biodegradable films seem to be necessary. For this aim, in the present study, kefiran-whey protein isolate bionanocomposite films were prepared and the impact of different concentrations (1, 3 and 5% w/w) of Al2O3 (alumina) nanoparticles on their physical, morphological, thermal and mechanical properties was studied. Based on the obtained results, an increase in the nanoparticles content led to a significant decrease (p < 0.05) in the water vapor permeability, moisture absorption, moisture content, and water solubility. Scanning electron microscope images showed a homogeneous structure, confirming the good dispersion of alumina nanoparticles with smooth surface up to concentration of 3%. In addition, both thermal stability and mechanical properties of the films were improved by the increased concentrations of alumina. The results of X-ray diffraction indicated that the intensity of the crystalline peaks of film increased with the addition of Al2O3 to kefiran-whey protein isolate matrix. By considering all results, the concentration of 3% was proposed as the appropriate concentration of Al2O3 for the nano-reinforcement of kefiran-whey protein isolate bionanocomposites.

Author(s):  
Mariya A. Dushkova ◽  
Nikolay D. Menkov ◽  
Nesho G. Toshkov

The purpose of the present study was to explore the effects of feed moisture and the addition of whey protein isolate on some physicochemical properties of the obtained extrudates from potato flakes. Extrudates were produced using a laboratory single-screw extruder. Conditions during extrusion were: screw speed - 200 rpm; compression ratio - 3:1; extruders temperature zones - 120, 150, 160 °C; diameter of the nozzle - 5 mm. With increasing of feed moisture content and protein level, there was a significant rise of density as well as lowering of expansion of extrudates. As the feed moisture content increased from 13 to 20 percent w.w. the water absorption index (WAI) increased and the water solubility index (WSI) decreased. The feed protein level increased the protein content and decreased WAI. A maximum of WSI was observed at feed moisture content 20 percent w.w. and protein level 18 percent w.w. The extrusion and the protein addition do not affect the equilibrium moisture of the potato flakes extrudates.


2018 ◽  
Author(s):  
Heidi Lightfoot

Functional properties of protein macromolecules such as protein solubility are of particular interest to the food and nutrition industries as they have significant implications on other useful properties and characteristics for the development of nutritional and food supplements. Consequently, proteins with specific and consistent functional characteristics are in high demand as essential ingredients in formulated food or in pharmaceutical and industrial mixtures. Proteins need to be highly soluble so that their functional properties can be effectively exploited, therefore methods to improve the solubility of protein powders are currently being developed. It has been hypothesized that atmospheric plasma treatment has an effect on protein solubility and dispersibility. This theory has not been yet explored with whey protein isolate elsewhere; this study is the first to explore the impact of plasma based treatment. The effect of atmospheric plasma treatment on the solubility and dispersibility of dry protein powder has been studied. Each variable was examined using both a pristine sample of whey protein isolate and a sample of whey protein isolate from the same product batch that had been exposed to atmospheric plasma (following ISO 8156 and ISO/TS 17758 protocols). We demonstrate that plasma can successfully increase the solubility and dispersibility of whey protein powder.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4278
Author(s):  
Fitriani Fitriani ◽  
Sri Aprilia ◽  
Nasrul Arahman ◽  
Muhammad Roil Bilad ◽  
Hazwani Suhaimi ◽  
...  

Among the main bio-based polymer for food packaging materials, whey protein isolate (WPI) is one of the biopolymers that have excellent film-forming properties and are environmentally friendly. This study was performed to analyse the effect of various concentrations of bio-based nanocrystalline cellulose (NCC) extracted from pineapple crown leaf (PCL) on the properties of whey protein isolate (WPI) films using the solution casting technique. Six WPI films were fabricated with different loadings of NCC from 0 to 10 % w/v. The resulting films were characterised based on their mechanical, physical, chemical, and thermal properties. The results show that NCC loadings increased the thickness of the resulting films. The transparency of the films decreased at higher NCC loadings. The moisture content and moisture absorption of the films decreased with the presence of the NCC, being lower at higher NCC loadings. The water solubility of the films decreased from 92.2% for the pure WPI to 65.5% for the one containing 10 % w/v of NCC. The tensile strength of the films peaked at 7% NCC loading with the value of 5.1 MPa. Conversely, the trend of the elongation at break data was the opposite of the tensile strength. Moreover, the addition of NCC produced a slight effect of NCC in FTIR spectra of the WPI films using principal component analysis. NCC loading enhanced the thermal stability of the WPI films, as shown by an increase in the glass transition temperature at higher NCC loadings. Moreover, the morphology of the films turned rougher and more heterogeneous with small particle aggregates in the presence of the NCC. Overall, the addition of NCC enhanced the water barrier and mechanical properties of the WPI films by incorporating the PCL-based NCC as the filler.


2011 ◽  
Vol 87 ◽  
pp. 213-222 ◽  
Author(s):  
Gui Yun Chen ◽  
Qiao Lei

Edible films based on whey protein isolate and sodium caseinate were prepared by uniform design method. Glycerol has been incorporated into the edible films as a plasticizer. For all types of films, the influences of components and forming temperature on film properties, such as mechanical properties, water solubility, optical properties, gas and water vapor permeability were investigated. The results suggested that glycerol was the most important factor influencing all the properties of edible composite protein films. However, both increases of sodium caseinate concentration and glycerol content contributed to decrease the barrier properties of gas and water vapor. Among the films studied, group D (prepared with 5% whey protein isolate, 2% sodium caseinate, 50% glycerol at the temperature of 50 °C) showed moderate mechanical properties, optical properties, water solubility and maximum barrier properties of gas and water vapor, with tensile strength=5.85MPa, elongation=101.20%, transparency=91.4%, gas permeability rate=49.92cm3m-2d-10.1MPa-1and water vapor permeability of 0.128×10-11g m-1s-1Pa-1, 0.260×10-11g m-1s-1Pa-1, 0.513×10-11g m-1s-1Pa-1, 1.252×10-11g m-1s-1Pa-1at the RH gradient of 10-40%, 10-50%, 10-60%, 10-70%, respectively.


2015 ◽  
Vol 48 ◽  
pp. 179-188 ◽  
Author(s):  
Viviane M. Azevedo ◽  
Marali V. Dias ◽  
Soraia V. Borges ◽  
Ana Letícia R. Costa ◽  
Eric Keven Silva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document