scholarly journals Validation of a Coupled Simulation for Machine Tool Dynamics Using a Linear Drive Actuator

2020 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
Michael Wiesauer ◽  
Christoph Habersohn ◽  
Friedrich Bleicher

In order to ensure high productivity capabilities of machine tools at a low cost but at increased geometric accuracy, modeling of their static and dynamic behavior is a crucial task in structure optimization. The drive control and the frictional forces acting in feed axes significantly determine the machine’s response in the frequency domain. The aim of this study was the accurate modeling and the experimental investigation of dynamic damping effects using a machine tool test rig with three-axis kinematics. For this purpose, an order-reduced finite element model of the mechanical structure was coupled with models of the drive control and of the non-linear friction behavior. In order to validate the individual models, a new actuator system based on a tubular linear drive was used for frequency response measurements during uniaxial carriage movements. A comparison of the dynamic measurements with the simulation results revealed a good match of amplitudes in the frequency domain by considering dynamic damping. Accordingly, the overall dynamic behavior of machine tool structures can be predicted and thus optimized by a coupled simulation at higher level of detail and by considering the damping effects of friction. Dynamic testing with the newly designed actuator is a prerequisite for model validation and control drive parameterization.

Author(s):  
Thomas Semm ◽  
Michael B. Nierlich ◽  
Michael F. Zaeh

Virtual prototypes, e.g., finite element models, are commonly used to reduce the development times of a new machine tool generation. However, the accuracy of these models is often limited by their representation of damping effects and the possibility to efficiently simulate the dynamic behavior in different axis positions. This paper shows the changing local damping distribution within a single-axis machine tool configuration for different axis positions. Based on this investigation, an approach to accurately model the position-dependent dynamics, while keeping the calculation times small, is presented. The virtual model of the machine is divided in several substructures, which consider the local damping behavior of each dissipation source. The reduced mass, stiffness, and damping matrices are coupled in the desired machine position by using multipoint constraints, which are generated at the desired machine position after the reduction of the substructures. Four different approaches to apply multipoint constraints on reduced substructures are compared, followed by an investigation of their influencing parameters. The most promising approach is compared with a model without local damping representation as well as a model without substructuring. By considering the local damping effects within the finite element model and coupling the reduced models of each component in arbitrary axis positions, an efficient analysis and optimization of the dynamic behavior of a machine tool over the whole workspace can be conducted.


2001 ◽  
Vol 29 (4) ◽  
pp. 258-268 ◽  
Author(s):  
G. Jianmin ◽  
R. Gall ◽  
W. Zuomin

Abstract A variable parameter model to study dynamic tire responses is presented. A modified device to measure terrain roughness is used to measure dynamic damping and stiffness characteristics of rolling tires. The device was used to examine the dynamic behavior of a tire in the speed range from 0 to 10 km/h. The inflation pressure during the tests was adjusted to 160, 240, and 320 kPa. The vertical load was 5.2 kN. The results indicate that the damping and stiffness decrease with velocity. Regression formulas for the non-linear experimental damping and stiffness are obtained. These results can be used as input parameters for vehicle simulation to evaluate the vehicle's driving and comfort performance in the medium-low frequency range (0–100 Hz). This way it can be important for tire design and the forecasting of the dynamic behavior of tires.


2017 ◽  
Vol 107 (05) ◽  
pp. 323-328
Author(s):  
S. Apprich ◽  
F. Wulle ◽  
A. Prof. Pott ◽  
A. Prof. Verl

Serielle Werkzeugmaschinenstrukturen weisen ein posenabhängiges, dynamisches Verhalten auf, wobei die Eigenfrequenzen um mehrere Hertz im Arbeitsraum variieren können. Die genaue Kenntnis dieses Verhaltens gestattet eine verbesserte Regelung der Strukturen. Ein generelles parametrisches Maschinenmodell, dessen Parameter online durch einen Recursive-Least-Squares-Algorithmus an das reale Maschinenverhalten angepasst werden, stellt Informationen über dieses Maschinenverhalten bereit.   Serial machine tool structures feature a pose-dependent dynamic behavior with natural frequencies varying by serveral hertz within the working space. The accurate knowledge of this behavior allows an improved control of the structures. A general parametric machine model, whose parameters are adapted online to the actual machine tool behavior by a Recursive Least Squares algorithm, provides information about the pose-dependent dynamic behavior.


2007 ◽  
Vol 14 (4) ◽  
pp. 513-523 ◽  
Author(s):  
H. Erdoğan ◽  
B. Akpınar ◽  
E. Gülal ◽  
E. Ata

Abstract. Engineering structures, like bridges, dams and towers are designed by considering temperature changes, earthquakes, wind, traffic and pedestrian loads. However, generally, it can not be estimated that these structures may be affected by special, complex and different loads. So it could not be known whether these loads are dangerous for the structure and what the response of the structures would be to these loads. Such a situation occurred on the Bosporus Bridge, which is one of the suspension bridges connecting the Asia and Europe continents, during the Eurasia Marathon on 2 October 2005, in which 75 000 pedestrians participated. Responses of the bridge to loads such as rhythmic running, pedestrian walking, vehicle passing during the marathon were observed by a real-time kinematic (RTK) Global Positioning System (GPS), with a 2.2-centimeter vertical accuracy. Observed responses were discussed in both time domain and frequency domain by using a time series analysis. High (0.1–1 Hz) and low frequencies (0.00036–0.01172 Hz) of observed bridge responses under 12 different loads which occur in different quantities, different types and different time intervals were calculated in the frequency domain. It was seen that the calculated high frequencies are similar, except for the frequencies of rhythmic running, which causes a continuously increasing vibration. Any negative response was not determined, because this rhythmic effect continued only for a short time. Also when the traffic load was effective, explicit changes in the bridge movements were determined. Finally, it was seen that bridge frequencies which were calculated from the observations and the finite element model were harmonious. But the 9th natural frequency value of the bridge under all loads, except rhythmic running could not be determined with observations.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Dongju Chen ◽  
Shuai Zhou ◽  
Lihua Dong ◽  
Jinwei Fan

This paper presents a new identification method to identify the main errors of the machine tool in time-frequency domain. The low- and high-frequency signals of the workpiece surface are decomposed based on the Daubechies wavelet transform. With power spectral density analysis, the main features of the high-frequency signal corresponding to the imbalance of the spindle system are extracted from the surface topography of the workpiece in the frequency domain. With the cross-correlation analysis method, the relationship between the guideway error of the machine tool and the low-frequency signal of the surface topography is calculated in the time domain.


2001 ◽  
Vol 124 (2) ◽  
pp. 406-413 ◽  
Author(s):  
M. O. T. Cole ◽  
P. S. Keogh ◽  
C. R. Burrows

The dynamic behavior of a rolling element bearing under auxiliary operation in rotor/magnetic bearing systems is analyzed. When contact with the rotor occurs, the inner race experiences high impact forces and rapid angular acceleration. A finite element model is used to account for flexibility of the inner race in series with non-linear ball stiffnesses arising from the ball-race contact zones. The dynamic conditions during rotor/inner race contact, including ball/race creep, are deduced from a non-linear matrix equation. The influences of bearing parameters are considered together with implications for energy dissipation in the bearing.


2013 ◽  
Vol 433-435 ◽  
pp. 1161-1164
Author(s):  
Chen Liu ◽  
Xiang Li Bu

Abstract: In order to evaluate motion performs of a numerical control machine tool objectively, the matter-element model for the motion performs evaluation of the NC was established based on extenics theory, the motion performs evaluation indexes of NC was made of multiple elements. The relational degree was calculated by introducing the relational function in the extension set theory, and the evaluation indexes weight coefficient of NC were defined by using the 1-9 scale law in AHP (the analytic hierarchy process). A numerical control machine tool as a study object, the motion performs was studied by using the extenics theory. The result indicated that the motion performs of this NC was good, the evaluation method possesses a certain practicability.


Sign in / Sign up

Export Citation Format

Share Document