scholarly journals Potentials of Vitrified and Elastic Bonded Fine Grinding Worms in Continuous Generating Gear Grinding

2021 ◽  
Vol 5 (1) ◽  
pp. 4
Author(s):  
Maximilian Schrank ◽  
Jens Brimmers ◽  
Thomas Bergs

Continuous generating gear grinding with vitrified grinding worms is an established process for the hard finishing of gears for high-performance transmissions. Due to the increasing requirements for gears in terms of power density, the required surface roughness is continuously decreasing. In order to meet the required tooth flank roughness, common manufacturing processes are polish grinding with elastic bonded grinding tools and fine grinding with vitrified grinding tools. The process behavior and potential of the different bonds for producing super fine surfaces in generating gear grinding have not been sufficiently scientifically investigated yet. Therefore, the objective of this report is to evaluate these potentials. Part of the investigations are the generating gear grinding process with elastic bonded, as well as vitrified grinding worms with comparable grit sizes. The potential of the different tool specifications is empirically investigated independent of the grain size, focusing on the influence of the bond. One result of the investigations was that the tooth flank roughness could be reduced to nearly the same values with the polish and the fine grinding tool. Furthermore, a dependence of the roughness on the selected grinding parameters could not be determined. However, it was found out that the profile line after polish grinding is significantly dependent on the process strategy used.

2016 ◽  
Vol 1140 ◽  
pp. 149-156
Author(s):  
Marco Kampka ◽  
Christoph Löpenhaus ◽  
Fritz Klocke

In order to improve load carrying capacity and noise behaviour, case hardened gears are usually hard finished. One possible process for hard finishing of gears is generating gear grinding, which has replaced other grinding processes in batch production of small and middle sized gears due to high process efficiency. Especially generating gear grinding of large module gears with a module higher than mn > 8 mm can be challenging due to high process forces and the resulting excitation, which can influence gear quality negatively. TÜRICH suggested applying a pitch diameter shift during generating gear grinding to equal out the number of contact points between the left and right flanks of the gear with the grinding tool [1]. This qualitative approach is not sufficient to predict the process behaviour because it does not take the changing radii of the curvature of the involute into account and, therefore, the changing contact conditions along the gear profile. In this paper a methodology to quantify the influence of pitch diameter shift on the generating gear grinding process using a manufacturing simulation is introduced. Additionally this methodology is validated for one manufacturing test case.


Author(s):  
Wenyuan Zhang ◽  
Lang He ◽  
Yuanchao Li ◽  
Dongyan Tang ◽  
Xin Li ◽  
...  

All-air-processed perovskite solar cells (PSCs) have attracted increasing attention due to low cost and simplified manufacturing processes. At present, to fabricate efficient and stable PSCs in the air is expected....


2016 ◽  
Vol 106 (05) ◽  
pp. 336-340
Author(s):  
D. Prof. Biermann ◽  
M. Kirschner

Hochleistungskunststoffe gewinnen stetig an industrieller Bedeutung und ersetzen in zahlreichen Anwendungen metallische Werkstoffe. Um dieser Entwicklung auch aus fertigungstechnischer Sicht gerecht zu werden, ist die parallele Optimierung von relevanten Fertigungsverfahren unumgänglich. Das Institut für spanende Fertigung ISF der Technischen Universität Dortmund nimmt sich aktuell einer dieser Herausforderungen an und beschäftigt sich mit der Prozessoptimierung des Einlippentiefbohrens thermoplastischer Kunststoffe.   High-performance plastics are steadily gaining ground in the industry, replacing metallic materials in numerous applications. To keep pace with this development in manufacturing, a synchronous optimization of relevant manufacturing processes is crucial. The Institute of Machining Technology currently deals with one of these challenges, focusing on the process optimization of single-lip deep hole drilling of thermoplastics.


2017 ◽  
Vol 107 (04) ◽  
pp. 301-305
Author(s):  
E. Prof. Uhlmann ◽  
F. Kaulfersch

Partikelverstärkte Titanmatrix-Verbundwerkstoffe erlauben erhebliche Leistungssteigerungen im Bereich hochtemperaturbeanspruchter Struktur- und Funktionsbauteile. Die durch die Partikelverstärkung gesteigerte Verschleißbeständigkeit, Festigkeit und Härte bedeuten eine große Herausforderung an die spanende Bearbeitung derartiger Hochleistungswerkstoffe. Mittels Zerspanuntersuchungen beim Fräsen konnten unter Variation der Werkzeuggeometrie, der Schneidstoffe und der Prozessstrategie Parameterbeiche identifiziert werden, mit denen die prozesssichere Zerspanung partikelverstärkter Titanmatrix-Verbundwerkstoffe möglich ist.   Particle-reinforced titanium matrix composites ensure significant performance improvements of structural and functional high-temperature components. However, the high wear resistance, toughness and hardness due to particle reinforcement is a major challenge in machining these high performance materials. By conducting milling experiments with a variation of tool geometry, cutting material and process strategy, process parameters could be identified that enable efficient machining of particle-reinforced titanium matrix composites.


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Abdelhamid Bouabid ◽  
Berend Denkena ◽  
Bernd Breidenstein ◽  
Alexander Krödel

Abstract The process behavior of a grinding tool is defined by the sum of interactions between the active abrasive grains and the workpiece. These interactions depend on the workpiece material, the manipulated parameters of the grinding process, and the tool properties. The tool properties are defined within the tool manufacturing process. In this context, the effects of the abrasive, the bond, and the sinter process on the global properties such as hardness, porosity, and fracture strength of the grinding layer are content of several research works. In contrast to this, the effects on the local properties, which define the grain/bond interface and therefore the process behavior at microscopic scale, have not yet been identified. This paper deals with identifying the influence of the sintering process on the local properties of the grinding layer. This is achieved by investigating the densification as well as the bond microstructure depending on the sintering parameters and on the specification of the initial mixture. As a use case, the bronze bond is considered. The results show that the input parameters have a significant impact on the homogeneity of the grinding layer. Due to the diffusion processes during sintering, there are densification gradients as well as tin concentration gradients in the grinding layer. The local tin concentration gradients imply different local mechanical and thermal properties. For this reason, each abrasive grain has unique interface properties.


2019 ◽  

Der Bericht ist ausschließlich als PDF-Dokument erschienen! Drei Konferenzen in einer, auf 1.874 Seiten finden Sie jede Menge aller neueste Informationen zum Thema Gears. Die beiden anderen Konferenzen waren: 3rd International Conference on High Performance Plastic Gears 2019 und 3rd International Conference on Gear Production 2019 Achtung: Dieser VDI-Bericht ist ausschließlich als PDF-Datei auf CD-ROM lieferbar! Auszug aus dem 22-seitigen Inhaltsverzeichnis: Foreword 1 K. Stahl, Technische Universität München (TUM), Garching International Conference on Gears 2019 Flank strength Influence of gear surface roughness on pitting and micropitting life 3 E. Bergstedt, Prof. U. Olofsson, KTH, Stockholm, Sweden; J. Lin, Beijing University of Technology, Beijing, China; P. Lindholm, ABB Corporate Research, Västerås, Sweden Influence of stressed volume of tooth flank on the surface durability 15 A. Kubo, Research Institute for Applied Sciences, Ooicho, Kyoto, Japan Transfer of the tooth fl...


2007 ◽  
Vol 280-283 ◽  
pp. 1391-1394 ◽  
Author(s):  
Zhi Hong Li ◽  
Yong Hong Zhang ◽  
Y.M. Zhu ◽  
Zheng Fang Yang

Cubic boron nitride(CBN) is a superhard materials with many advantages and many uses. Vitrified bond CBN grinding tool is a promising abrasive tool of high performance used for high speed, high efficiency, high precision grinding with lower grinding cost and less environment pollution. Sintering of vitrified bond CBN grinding tool was investigated in this paper. The results showed that practical sintering temperature of this tool was much lower than the initial oxidation temperature of CBN particle measured by comprehensive thermal analysis. The upper limit of sintering temperature should be determined by taking account of the thermal analyzing results, heating process of CBN and its change in strength and structure. Within the sintering temperature range of the vitrified bond, relatively higher sintering temperature was beneficial to the strength of bond bridge and the holding strength between bond and CBN abrasive particles. CBN tool sintered at relatively lower temperature tended to fracture through the bond bridge, while the one sintered at higher temperature tended to fracture along the boundary between CBN abrasive grain and vitrified bond.


2017 ◽  
Vol 5 (11) ◽  
pp. 2745-2757 ◽  
Author(s):  
Jangwhan Cho ◽  
Seong Hoon Yu ◽  
Dae Sung Chung

This review reports on the development of polymeric semiconductors through environmentally friendly manufacturing processes, especially for transistor applications.


Sign in / Sign up

Export Citation Format

Share Document