scholarly journals Fundamental Investigation of Diamond Cutting of Micro V-Shaped Grooves on a Polycrystalline Soft-Brittle Material

2021 ◽  
Vol 5 (1) ◽  
pp. 17
Author(s):  
Weihai Huang ◽  
Jiwang Yan

Fabricating micro-structures on optical materials has received great interest in recent years. In this work, micro-grooving experiments were performed on polycrystalline zinc selenide (ZnSe) to investigate the feasibility of surface micro-structuring on polycrystalline soft-brittle material by diamond turning. A photosensitive resin was coated on the workpiece before cutting, and it was found that the coating was effective in suppressing brittle fractures at the edges of the grooves. The effect of tool feed rate in groove depth direction was examined. Results showed that the defect morphology on the groove surface was affected by the tool feed rate. The crystallographic orientation of grains around the groove was characterized by electron backscatter diffraction (EBSD), and it was found that the formation of defects was strongly dependent on the angle of groove surface with respect to the cleavage plane of grain. The stress distribution of the micro-grooving process was investigated by the finite element method. Results showed that the location of tensile stresses in the coated workpiece was farther from the edge of the groove compared with that in the uncoated workpiece, verifying the experimental result that brittle fractures were suppressed by the resin coating.

2016 ◽  
Vol 78 (6-9) ◽  
Author(s):  
Mohd Shahfizal Ruslan ◽  
Kamal Othman ◽  
Jaharah A.Ghani ◽  
Mohd Shahir Kassim ◽  
Che Hassan Che Haron

Magnesium alloy is a material with a high strength to weight ratio and is suitable for various applications such as in automotive, aerospace, electronics, industrial, biomedical and sports. Most end products require a mirror-like finish, therefore, this paper will present how a mirror-like finishing can be achieved using a high speed face milling that is equivalent to the manual polishing process. The high speed cutting regime for magnesium alloy was studied at the range of 900-1400 m/min, and the feed rate for finishing at 0.03-0.09 mm/tooth. The surface roughness found for this range of cutting parameters were between 0.061-0.133 µm, which is less than the 0.5µm that can be obtained by manual polishing. Furthermore, from the S/N ratio plots, the optimum cutting condition for the surface roughness can be achieved at a cutting speed of 1100 m/min, feed rate 0.03 mm/tooth, axial depth of cut of 0.20 mm and radial depth of cut of 10 mm. From the experimental result the lowest surface roughness of 0.061µm was obtained at 900 m/min with the same conditions for other cutting parameters. This study revealed that by milling AZ91D at a high speed cutting, it is possible to eliminate the polishing process to achieve a mirror-like finishing.


Author(s):  
J Wang ◽  
A Moridi ◽  
P Mathew

An investigation of the micro-grooving performance of abrasive air jet (AAJ) on quartz crystals is presented and discussed. An experimental study was carried out first to understand the effect of process parameters on the major grooving performance measures such as groove depth, groove width, kerf taper, and surface roughness. Plausible trends for these grooving performance measures with respect to the various process variables, such as air pressure, nozzle traverse speed, jet impact angle, and abrasive mass flowrate, are discussed. It is found that AAJ is an effective technology for micromachining of quartz crystals and the grooving performance can be improved or optimized by selecting the process parameters properly. Predictive models are then developed for quantitatively estimating the micro-grooving performance. The models are finally verified by an experiment. It shows that the model predictions are in good agreement with the experimental results under the corresponding conditions.


2019 ◽  
Vol 298 ◽  
pp. 135-140
Author(s):  
Muhammad Mukhtar Liman ◽  
Khaled Abou El Hossein

The electrostatic charges encountered by a cutting tool when turning advanced contact lenses are important as they reflect the quality and condition of the tool, machine, fixture, and sometimes even the surface finished which is responsible for tool wear and poor surface quality. This study investigates the influence of cutting parameters namely cutting speed, feed rate and depth of cut on electrostatic charge (ESC) which play the leading role in determining the machine economics and quality of machining contact lens polymers. An electrostatic charge model based on response surface statistical method is developed for reliably predicting the values of static charging based on its relationship to cutting parameters in ultra-high precision diamond turning of contact lenses. It is clearly seen that all the model terms are significant with cutting speed having the highest degree of significance followed by feed rate and the interaction of speed and feed. However, depth of cut has the lowest degree of significance on the electrostatics charge.


2018 ◽  
Vol 2 (4) ◽  
pp. 67 ◽  
Author(s):  
Sina Heshmati ◽  
Mohammad Mazloomi ◽  
Philip Evans

Machining grooves into the surface of pine and fir (Abies spp.) deckboards reduces undesirable checking that develops when “profiled” boards are exposed to the weather. We aim to develop improved profiles for Douglas fir, western hemlock and white spruce decking to reduce their susceptibility to checking, and understand how profile geometry influences the stresses that cause checking. We varied the width and depth of grooves in profiled deckboards, exposed deckboards to the weather, and measured checking and cupping of boards. A numerical model examined the effect of groove depth on the moisture-induced stresses in profiled spruce boards. Profiling significantly reduced checking, but increased cupping of deckboards made from all three species. Western hemlock checked more than the other two species. Profiles with narrow grooves (rib profiles) were better at restricting checking than profiles with wider grooves. A rib profile with deeper grooves developed smaller stresses than a rib profile with shallower grooves, and boards with the former profile checked less than boards with shallower grooves. We conclude that checking of profiled Douglas fir, western hemlock and white spruce decking is significantly reduced by changing profile geometry, and our results suggest the best profiles to reduce checking of all three species.


2012 ◽  
Vol 500 ◽  
pp. 333-338 ◽  
Author(s):  
De Ping Yu ◽  
Yoke San Wong ◽  
Geok Soon Hong

Micro-structured surfaces on brittle materials, e.g. ceramic and glass, are gaining increasing application in a range of areas. In this paper, fast tool servo (FTS) diamond turning has been applied to machine micro-structured surfaces on brittle materials and the machined surfaces has been observed to study its machining mechanism. A machining model is presented to enable ductile-regime machining of the brittle material. Based on the model, machining characteristics can be predicted for given cutting conditions. Experimental investigation on machining of a micro-structured surface verified that ductile-regime machining can be ensured on the entire surface through path planning simulation based on the machining model.


2017 ◽  
Vol 889 ◽  
pp. 152-158
Author(s):  
K. Kadirgama ◽  
K. Abou-El-Hossein

Stainless steel was used for many engineering applications. The optimum parameters needs to be identify to save the cutting tool usage and increase productivity. The purpose of this study is to develop the surface roughness mathematical model for AISI 304 stainless steel when milling using TiN (CVD) carbide tool. The milling process was done under various cutting condition which is cutting speed (1500, 2000 and 2500 rpm), feed rate (0.02, 0.03 and 0.04 mm/tooth) and axial depth (0.1, 0.2 and 0.3 mm). The first order model and quadratic model have been developed using Response Surface Method (RSM) with confident level 95%. The prediction models were comparing with the actual experimental results. It is found that quadratic model much fit the experimental result compare to linear model. In general, the results obtained from the mathematical models were in good agreement with those obtained from the machining experiments. Besides that, it is shown that the influence of cutting speed and feed rate are much higher on surface roughness compare to depth of cut. The optimum cutting speed, feed rate and axial depth is 2500 rpm, 0.0212 mm/tooth and 0.3mm respectively. Besides that, continues chip is produced at cutting speed 2500 rpm meanwhile discontinues chip produced at cutting speed 1500 rpm.


2019 ◽  
Vol 2 (1) ◽  
pp. 49-60
Author(s):  
Indra Narayan Yadav

Due to very good compressive strength of concrete, it is used widely in all over the world during three decades. The Formulation of Concrete is through combination of Cement, stone aggregate, sand and water according to their design mix based on the ultimate strength required for the structural component. The Mixing of concrete is as mortar, the layer of cement, sand and water is wrapped around the aggregate. When the load is applied to the concrete, the weaker zone i.e. mortar of cement, sand is weaker than stone aggregate, damage by formulation of crack before crack in aggregate. The Damage behavior of Concrete is thus to be analyzed according to their fatigue behavior. Strain Based approach in Fatigue Damage Modelling of Brittle Material in Concrete is presented to describe the behavior and failure of con-crete by utilizing Damage Mechanics approach. Stiffness degradation and inelastic deformation are the essential features of concrete that develop due tothe formation of multitude of microcracks in the fatigue environment. Microcracking, which is anisotropic in nature, destroys the bond between material grains, and affects the elastic properties resulting in the reduction of material stiffness in elastic as well as plastic stage. This paper presents an anisotropic fatigue damage model for plain concrete subjected to cyclic tension. The model is developed, in strain space, using the general framework of internal variable theory of continuum thermodynamics and Damage Mechanics. It is argued that within the damage surface of given strain states the unloadingreloading cycles (fatigue loading) stimulate the nucleation and growth microcracks in concrete, which will result in stiffness degradation and inelastic deformation, and hence material is termed as damaged. Damage is reflected through the fourthorder stiffness tensor involving a damage parameter whose increment is governed by the consistency equation associated with a cycle dependent damage surface in strain space. The model is capable of predicting stiffness degradation, inelastic deformation and strength reduction under fatigue loading and compared against experimental result. By increasing the number of loading cycles, the strength of concrete gradually decreases and the limit surface is allowed to contract and form new curves representing residual strengths. The magnitude of loading, load range, and the load path are known to influence the fatigue life and hence are addressed in this formulation. In this paper, a strength softening function is proposed in order to address the re-duction in the strength of concrete due to fatigue. Separate softening functions are also proposed to account for the deformation characteristics in concrete under cyclic loading. Numerical simula-tions predicted by the model in both uniaxial and biaxial stress paths show a good correlation with the experimental data available in the literature.


2012 ◽  
Vol 542-543 ◽  
pp. 551-554
Author(s):  
Xiao Bing Chen ◽  
Wen He Liao

Aiming at the problem of lower efficiency of complex surface machining with constant feed-rate, a method for feed-rate optimization based on S curve acceleration and deceleration control of piecewise tool path is researched. With constraints of kinematic characters of machine tool and geometric characters of tool path, tool path segments are obtained by curvature threshold method, and feed-rates are planned in these segments, then feed-rate transition of adjacent segments is processed by the method of S curve acceleration and deceleration control. Experimental result indicates that the proposed method is feasible and effective.


2016 ◽  
Vol 861 ◽  
pp. 133-138
Author(s):  
Xiang Ning Pan ◽  
Chuan Zhen Huang ◽  
Jun Wang ◽  
Hong Tao Zhu ◽  
Peng Yao

Laser-assisted waterjet micro-machining can significantly reduce the thermal damages to the workpiece as compared to the traditional laser machining process, and hence can overcome the problems associated with laser machining, such as the formation of heat-affected zone, which is a serious issue for thermal sensitive and functional materials. An experimental study on micro-grooving of monocrystalline silicon wafers is reported in this study to explore the effects of process parameters on the groove depth and width as well as the heat-affected zone (HAZ) width. Predictive models based on dimensionl analysis are then developed for estiamting the groove characteristics.


2014 ◽  
Vol 592-594 ◽  
pp. 854-858
Author(s):  
N.S. Pawar ◽  
R.R. Lakhe ◽  
R.L. Shrivastava

According to the most of the studies dealing with micro grooving, cutting, leading to lower material removal Abrasive jet machining is traditional process. Invention was made to create those needs. A number of investigation or researches were carried out by imminent personality but no detailed information and design has provided about cylindrical vibrating chamber or mixing chamber. This change in shape gives better velocity to abrasive particles and non sticking characteristic gives the better effect of erosion of material on work piece and scattering of particle towards objects. The parameter stand off distance, variable pressure, material removal rate used for this experimental study has also moderate. The work carried out with Alumina nozzle. The abrasive powder feed rate is controlled by the amplitude of mixing chamber. The root mean square value is 0.988 in linear regression model. The estimated standard error is 0.00115 which is very less. The performance of sand gives the similar better model result as given by traditional using different parameter. The taper of cut is higher with this mixing particle and better feed rate.


Sign in / Sign up

Export Citation Format

Share Document