scholarly journals Wireless Remote Control for Underwater Vehicles

2020 ◽  
Vol 8 (10) ◽  
pp. 736
Author(s):  
Filippo Campagnaro ◽  
Alberto Signori ◽  
Michele Zorzi

Nowadays, the increasing availability of commercial off-the-shelf underwater acoustic and non-acoustic (e.g., optical and electromagnetic) modems that can be employed for both short-range broadband and long-range low-rate communication, the increasing level of autonomy of underwater vehicles, and the refinement of their underwater navigation systems pave the way for several new applications, such as data muling from underwater sensor networks and the transmission of real-time video streams underwater. In addition, these new developments inspired many companies to start designing hybrid wireless-driven underwater vehicles specifically tailored for off-shore operations and that are able to behave either as remotely operated vehicles (ROVs) or as autonomous underwater vehicles (AUVs), depending on both the type of mission they are required to perform and the limitations imposed by underwater communication channels. In this paper, we evaluate the actual quality of service (QoS) achievable with an underwater wireless-piloted vehicle, addressing the realistic aspects found in the underwater domain, first reviewing the current state-of-the-art of communication technologies and then proposing the list of application streams needed for control of the underwater vehicle, grouping them in different working modes according to the level of autonomy required by the off-shore mission. The proposed system is finally evaluated by employing the DESERT Underwater simulation framework by specifically analyzing the QoS that can be provided to each application stream when using a multimodal underwater communication system specifically designed to support different traffic-based QoSs. Both the analysis and the results show that changes in the underwater environment have a strong impact on the range and on the stability of the communication link.

Author(s):  
Alexandre Immas ◽  
Mohsen Saadat ◽  
Jesus Navarro ◽  
Matthew Drake ◽  
Julie Shen ◽  
...  

Abstract We present a new method for underwater wireless communication with high bandwidth and over long distance. A swarm of Autonomous Underwater Vehicles (AUVs) is used to relay an optical signal between two points at any distance. Each vehicle is equipped with multiple attitude stabilization systems to reach the required pointing and tracking accuracy for optical communication. This technology would enable fast and efficient underwater exploration which is highly needed as only 5% of the world’s oceans have been explored so far. We carried out an experimental proof of concept to show that it is possible to relay an optical signal underwater between two points using a swarm of AUVs. The experiment took place in a 2m deep water tank. We modified and controlled two submarine models to reflect the laser beam stemming from a laser pointer at the bottom of the tank to the desired location. To know their positions, we developed an image processing technique which required the setup of a RF communication link at 315Mhz between the computers processing the camera’s videos and the units.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 737 ◽  
Author(s):  
Dimitrios Eleftherakis ◽  
Raul Vicen-Bueno

Underwater communication cables transport large amounts of sensitive information between countries. This fact converts these cables into a critical infrastructure that must be protected. Monitoring the underwater cable environment is rare and any intervention is usually driven by cable faults. In the last few years, several reports raised issues about possible future malicious attacks on such cables. The main objective of this operational research and analysis (ORA) paper is to present an overview of different commercial and already available marine sensor technologies (acoustic, optic, magnetic and oceanographic) that could be used for autonomous monitoring of the underwater cable environment. These sensors could be mounted on different autonomous platforms, such as unmanned surface vehicles (USVs) or autonomous underwater vehicles (AUVs). This paper analyses a multi-threat sabotage scenario where surveying a transatlantic cable of 13,000 km, (reaching water depths up to 4000 m) is necessary. The potential underwater threats identified for such a scenario are: divers, anchors, fishing trawls, submarines, remotely operated vehicles (ROVs) and AUVs. The paper discusses the capabilities of the identified sensors to detect such identified threats for the scenario under study. It also presents ideas on the construction of periodic and permanent surveillance networks. Research study and results are focused on providing useful information to decision-makers in charge of designing surveillance capabilities to secure underwater communication cables.


2021 ◽  
Vol 163 (A3) ◽  
Author(s):  
F U Rehman ◽  
E Anderlini ◽  
G Thomas

The successful ability to conduct underwater transportation using multiple autonomous underwater vehicles (AUVs) is important for the commercial sector to undertake precise underwater installations on large modules, whilst for the military sector it has the added advantage of improved secrecy for clandestine operations. The technical requirements are the stability of the payload and internal collision avoidance while keeping track of the desired trajectory considering the underwater effects. Here, a leader-follower formation control strategy was developed and implemented on the transportation system of AUVs. PID controllers were used for the vehicles and a linear feedback controller for maintaining the formation. A Kalman Filter (KF) was designed to estimate the full state of the leader under disturbance, noise and limited sensor readings. The results demonstrate that though the technical requirements are met, the thrust oscillations under disturbance and noise produce the undesired heading angles.  


2021 ◽  
Vol 31 (2) ◽  
pp. 75-83

Autonomous Underwater Vehicles (AUV) is an unmanned underwater device with capability of performing a variety of missions in the water environment such as ocean operation, offshore waters, polluted water investigation including: marine scientific research, maritime monitoring, exploration, marine economics, oil and gas, security and defense, surveillance and measurement and in rescue and salve. In this article, the authors developed a model of AUV with retractable wings and evaluate the efficiency of solar energy collection. The establishment of the controller to adapt the stability requirements, in accordance with the model of equipment S-AUV (Solar - Autonomous Underwater Vehicles) was built. The hydrodynamic equations with the predefined conditions were modeled and solved. The Hierarchical Sliding Mode Controller (HSMC) for the S-AUV were applied in this research. Experimental results showed that the efficiency of the collection of the solar cell has been significantly improved comparing to a diving equipment without retractable energy wings. In addition, the simulation results showed that the developed controller performed much better control quality, adhering to the set value with the error within the permissible limit.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3414 ◽  
Author(s):  
Fahad Khan ◽  
Sehar Butt ◽  
Saad Khan ◽  
Ladislau Bölöni ◽  
Damla Turgut

Sensor nodes in underwater sensor networks may acquire data at a higher rate than their ability to communicate over underwater acoustic channels. Autonomous underwater vehicles may mitigate this mismatch by offloading high volumes of data from the sensor nodes and ferrying them to the sink. Such a mode of data transfer results in high latency. Occasionally, these networks need to report high priority events such as catastrophes or intrusions. In such a scenario the expectation is to have a minimal end-to-end delay for event reporting. Considering this, underwater vehicles should schedule their visits to the sensor nodes in a manner that aids efficient reporting of high-priority events. We propose the use of the Value of Information metric in order to improve the reporting of events in an underwater sensor network. The proposed approach classifies the recorded data in terms of its value and priority. The classified data is transmitted using a combination of acoustic and optical channels. We perform experiments with a binary event model, i.e., we classify the events into high-priority and low-priority events. We explore a couple of different path planning strategies for the autonomous underwater vehicle. Our results show that scheduling visits to sensor nodes, based on algorithms that address the value of information, improves the timely reporting of high priority data and enables the accumulation of larger value of information.


Robotics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 5
Author(s):  
Julian Hoth ◽  
Wojciech Kowalczyk

Autonomous underwater vehicles (AUVs) have changed the way marine environment is surveyed, monitored and mapped. Autonomous underwater vehicles have a wide range of applications in research, military, and commercial settings. AUVs not only perform a given task but also adapt to changes in the environment, e.g., sudden side currents, downdrafts, and other effects which are extremely unpredictable. To navigate properly and allow simultaneous localisation and mapping (SLAM) algorithms to be used, these effects need to be detected. With current navigation systems, these disturbances in the water flow are not measured directly. Only the indirect effects are observed. It is proposed to detect the disturbances directly by placing pressure sensors on the surface of the AUV and processing the pressure data obtained. Within this study, the applicability of different learning methods for determining flow parameters of a surrounding fluid from pressure on an AUV body are tested. This is based on CFD simulations using pressure data from specified points on the surface of the AUV. It is shown that support vector machines are most suitable for the given task and yield excellent results.


2021 ◽  
Author(s):  
José Enrique Almanza-Medina ◽  
Benjamin Henson ◽  
Yuriy Zakharov

Many underwater applications that involve the use of autonomous underwater vehicles require accurate navigation systems. Image registration from acoustic images is a technique that can be used to achieve this task by comparing two consecutive sonar images and estimate the motion of the vechicle. The use of deep learning (DL) techniques for motion estimation can significantly reduce the processing complexity and achieve high-accuracy position estimates. In this paper we investigate the performance improvement when using two sonar sensors compared to using a single sensor. The DL network is trained using images generated by a sonar simulator. The results show an improvement in the estimation accuracy when using two sensors.


2021 ◽  
Vol 2091 (1) ◽  
pp. 012054
Author(s):  
A A Timoshenko ◽  
A V Zuev ◽  
E S Mursalimov

Abstract An algorithm has been developed for creating a single raster map of the seabed from photos obtained from vertically downward cameras of autonomous underwater vehicles (AUV) using tile graphics. The images obtained during the movement of AUV are combined into a single scalable photo map, divided into square segments (tiles). This representation of graphical information allows to quickly access the images with specialized tools after lifting the AUV to the surface and reduce the time spent by the operator to analyze the results of the mission. The images were combined using simple geometric transformations based on the data received from the navigation systems of the underwater vehicle and the parameters of its camera. The efficiency of the algorithm was tested on real data taken from a marine expedition.


2021 ◽  
Vol 8 ◽  
Author(s):  
Brian R. Page ◽  
Reeve Lambert ◽  
Jalil Chavez‐Galaviz ◽  
Nina Mahmoudian

One of the main limiting factors in deployment of marine robots is the issue of energy sustainability. This is particularly challenging for traditional propeller-driven autonomous underwater vehicles which operate using energy intensive thrusters. One emerging technology to enable persistent performance is the use of autonomous recharging and retasking through underwater docking stations. This paper presents an integrated navigational algorithm to facilitate reliable underwater docking of autonomous underwater vehicles. Specifically, the algorithm dynamically re-plans Dubins paths to create an efficient trajectory from the current vehicle position through approach into terminal homing. The path is followed using integral line of sight control until handoff to the terminal homing method. A light tracking algorithm drives the vehicle from the handoff location into the dock. In experimental testing using an Oceanserver Iver3 and Bluefin SandShark, the approach phase reached the target handoff within 2 m in 48 of 48 tests. The terminal homing phase was capable of handling up to 5 m offsets with approximately 70% accuracy (12 of 17 tests). In the event of failed docking, a Dubins path is generated to efficiently drive the vehicle to re-attempt docking. The vehicle should be able to successfully dock in the majority of foreseeable scenarios when re-attempts are considered. This method, when combined with recent work on docking station design, intelligent cooperative path planning, underwater communication, and underwater power transfer, will enable true persistent undersea operation in the extremely dynamic ocean environment.


Sign in / Sign up

Export Citation Format

Share Document