scholarly journals Development of a Fuel Consumption Prediction Model Based on Machine Learning Using Ship In-Service Data

2021 ◽  
Vol 9 (2) ◽  
pp. 137
Author(s):  
Young-Rong Kim ◽  
Min Jung ◽  
Jun-Bum Park

As interest in eco-friendly ships increases, methods for status monitoring and forecasting using in-service data from ships are being developed. Models for predicting the energy efficiency of a ship in real time need to effectively process the operational data and be optimized for such an application. This paper presents models that can predict fuel consumption using in-service data collected from a 13,000 TEU class container ship, along with statistical and domain-knowledge methods to select the proper input variables for the models. These methods prevent overfitting and multicollinearity while providing practical applicability. To implement the prediction model, either an artificial neural network (ANN) or multiple linear regression (MLR) were applied, where the ANN-based models showed the best prediction accuracy for both variable selection methods. The goodness of fit of the models based on ANN ranged from 0.9709 to 0.9936. Furthermore, sensitivity analysis of the draught under normal operating conditions indicated an optimal draught of 14.79 m, which was very close to the design draught of the target ship, and provides the optimal fuel consumption efficiency. These models could provide valuable information for ship operators to support decision making to maintain efficient operating conditions.

Metals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 593 ◽  
Author(s):  
Qiangjian Gao ◽  
Yingyi Zhang ◽  
Xin Jiang ◽  
Haiyan Zheng ◽  
Fengman Shen

The Ambient Compressive Strength (CS) of pellets, influenced by several factors, is regarded as a criterion to assess pellets during metallurgical processes. A prediction model based on Artificial Neural Network (ANN) was proposed in order to provide a reliable and economic control strategy for CS in pellet production and to forecast and control pellet CS. The dimensionality of 19 influence factors of CS was considered and reduced by Principal Component Analysis (PCA). The PCA variables were then used as the input variables for the Back Propagation (BP) neural network, which was upgraded by Genetic Algorithm (GA), with CS as the output variable. After training and testing with production data, the PCA-GA-BP neural network was established. Additionally, the sensitivity analysis of input variables was calculated to obtain a detailed influence on pellet CS. It has been found that prediction accuracy of the PCA-GA-BP network mentioned here is 96.4%, indicating that the ANN network is effective to predict CS in the pelletizing process.


2008 ◽  
Vol 35 (7) ◽  
pp. 699-707 ◽  
Author(s):  
Halil Ceylan ◽  
Kasthurirangan Gopalakrishnan ◽  
Sunghwan Kim

The dynamic modulus (|E*|) is one of the primary hot-mix asphalt (HMA) material property inputs at all three hierarchical levels in the new Mechanistic–empirical pavement design guide (MEPDG). The existing |E*| prediction models were developed mainly from regression analysis of an |E*| database obtained from laboratory testing over many years and, in general, lack the necessary accuracy for making reliable predictions. This paper describes the development of a simplified HMA |E*| prediction model employing artificial neural network (ANN) methodology. The intelligent |E*| prediction models were developed using the latest comprehensive |E*| database that is available to researchers (from National Cooperative Highway Research Program Report 547) containing 7400 data points from 346 HMA mixtures. The ANN model predictions were compared with the Hirsch |E*| prediction model, which has a logical structure and a relatively simple prediction model in terms of the number of input parameters needed with respect to the existing |E*| models. The ANN-based |E*| predictions showed significantly higher accuracy compared with the Hirsch model predictions. The sensitivity of input variables to the ANN model predictions were also examined and discussed.


Flooding is a major problem globally, and especially in SuratThani province, Thailand. Along the lower Tapeeriver in SuratThani, the population density is high. Implementing an early warning system can benefit people living along the banks here. In this study, our aim was to build a flood prediction model using artificial neural network (ANN), which would utilize water and stream levels along the lower Tapeeriver to predict floods. This model was used to predict flood using a dataset of rainfall and stream levels measured at local stations. The developed flood prediction model consisted of 4 input variables, namely, the rainfall amounts and stream levels at stations located in the PhraSeang district (X.37A), the Khian Sa district (X.217), and in the Phunphin district (X.5C). Model performance was evaluated using input data spanning a period of eight years (2011–2018). The model performance was compared with support vector machine (SVM), and ANN had better accuracy. The results showed an accuracy of 97.91% for the ANN model; however, for SVM it was 97.54%. Furthermore, the recall (42.78%) and f-measure (52.24%) were better for our model, however, the precision was lower. Therefore, the designed flood prediction model can estimate the likelihood of floods around the lower Tapee river region


2018 ◽  
Vol 173 ◽  
pp. 01016
Author(s):  
LI Ming ◽  
LIU Yan-hao ◽  
YUAN Yi-ping ◽  
ZHANG Shi-wen

Aiming at the problem of transformer manufacturing enterprises bidding is lacking scientific theoretical guidance and low bid probability, in order to predict the next bid price, based on principal component analysis (PCA) and artificial neural network (ANN) pre-tender estimate forecast model is proposed. The model uses PCA to preprocess the original high dimensional data, select principal components (PC) as the radial basis function (RBF) neural network's input. PCA eliminates the correlation of the input variables, at the same time of simplifying the structure of ANN, improving the accuracy of the prediction model. The simulation results show the applicability of the pre-tender estimate forecast model.


2006 ◽  
Vol 1 (1) ◽  
Author(s):  
K. Katayama ◽  
K. Kimijima ◽  
O. Yamanaka ◽  
A. Nagaiwa ◽  
Y. Ono

This paper proposes a method of stormwater inflow prediction using radar rainfall data as the input of the prediction model constructed by system identification. The aim of the proposal is to construct a compact system by reducing the dimension of the input data. In this paper, Principal Component Analysis (PCA), which is widely used as a statistical method for data analysis and compression, is applied to pre-processing radar rainfall data. Then we evaluate the proposed method using the radar rainfall data and the inflow data acquired in a certain combined sewer system. This study reveals that a few principal components of radar rainfall data can be appropriate as the input variables to storm water inflow prediction model. Consequently, we have established a procedure for the stormwater prediction method using a few principal components of radar rainfall data.


2021 ◽  
Vol 20 ◽  
pp. 153303382110246
Author(s):  
Jihwan Park ◽  
Mi Jung Rho ◽  
Hyong Woo Moon ◽  
Jaewon Kim ◽  
Chanjung Lee ◽  
...  

Objectives: To develop a model to predict biochemical recurrence (BCR) after radical prostatectomy (RP), using artificial intelligence (AI) techniques. Patients and Methods: This study collected data from 7,128 patients with prostate cancer (PCa) who received RP at 3 tertiary hospitals. After preprocessing, we used the data of 6,755 cases to generate the BCR prediction model. There were 16 input variables with BCR as the outcome variable. We used a random forest to develop the model. Several sampling techniques were used to address class imbalances. Results: We achieved good performance using a random forest with synthetic minority oversampling technique (SMOTE) using Tomek links, edited nearest neighbors (ENN), and random oversampling: accuracy = 96.59%, recall = 95.49%, precision = 97.66%, F1 score = 96.59%, and ROC AUC = 98.83%. Conclusion: We developed a BCR prediction model for RP. The Dr. Answer AI project, which was developed based on our BCR prediction model, helps physicians and patients to make treatment decisions in the clinical follow-up process as a clinical decision support system.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Saeed Peyghami ◽  
Tomislav Dragicevic ◽  
Frede Blaabjerg

AbstractThis paper proposes a long-term performance indicator for power electronic converters based on their reliability. The converter reliability is represented by the proposed constant lifetime curves, which have been developed using Artificial Neural Network (ANN) under different operating conditions. Unlike the state-of-the-art theoretical reliability modeling approaches, which employ detailed electro-thermal characteristics and lifetime models of converter components, the proposed method provides a nonparametric surrogate model of the converter based on limited non-linear data from theoretical reliability analysis. The proposed approach can quickly predict the converter lifetime under given operating conditions without a further need for extended, time-consuming electro-thermal analysis. Moreover, the proposed lifetime curves can present the long-term performance of converters facilitating optimal system-level design for reliability, reliable operation and maintenance planning in power electronic systems. Numerical case studies evaluate the effectiveness of the proposed reliability modeling approach.


Membranes ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 70
Author(s):  
Jasir Jawad ◽  
Alaa H. Hawari ◽  
Syed Javaid Zaidi

The forward osmosis (FO) process is an emerging technology that has been considered as an alternative to desalination due to its low energy consumption and less severe reversible fouling. Artificial neural networks (ANNs) and response surface methodology (RSM) have become popular for the modeling and optimization of membrane processes. RSM requires the data on a specific experimental design whereas ANN does not. In this work, a combined ANN-RSM approach is presented to predict and optimize the membrane flux for the FO process. The ANN model, developed based on an experimental study, is used to predict the membrane flux for the experimental design in order to create the RSM model for optimization. A Box–Behnken design (BBD) is used to develop a response surface design where the ANN model evaluates the responses. The input variables were osmotic pressure difference, feed solution (FS) velocity, draw solution (DS) velocity, FS temperature, and DS temperature. The R2 obtained for the developed ANN and RSM model are 0.98036 and 0.9408, respectively. The weights of the ANN model and the response surface plots were used to optimize and study the influence of the operating conditions on the membrane flux.


Author(s):  
Jin Yu ◽  
Pengfei Shen ◽  
Zhao Wang ◽  
Yurun Song ◽  
Xiaohan Dong

Heavy duty vehicles, especially special vehicles, including wheel loaders and sprinklers, generally work with drastic changes in load. With the usage of a conventional hydraulic mechanical transmission, they face with these problems such as low efficiency, high fuel consumption and so forth. Some scholars focus on the research to solve these issues. However, few of them take into optimal strategies the fluctuation of speed ratio change, which can also cause a lot of problems. In this study, a novel speed regulation is proposed which cannot only solve problems above but also overcome impact caused by speed ratio change. Initially, based on the former research of the Compound Coupled Hydro-mechanical Transmission (CCHMT), the basic characteristics of CCHMT are analyzed. Besides, to solve these problems, dynamic programming algorithm is utilized to formulate basic speed regulation strategy under specific operating condition. In order to reduce the problem caused by speed ratio change, a new optimization is applied. The results indicate that the proposed DP optimal speed regulation strategy has better performance on reducing fuel consumption by up to 1.16% and 6.66% in driving cycle JN1015 and in ECE R15 working condition individually, as well as smoothing the fluctuation of speed ratio by up to 12.65% and 19.01% in those two driving cycles respectively. The processes determining the speed regulation strategy can provide a new method to formulate the control strategies of CCHMT under different operating conditions particularlly under real-world conditions.


2021 ◽  
Vol 111 ◽  
pp. 106576
Author(s):  
Chen Kong ◽  
Juntao Chang ◽  
Ziao Wang ◽  
Yunfei Li

Sign in / Sign up

Export Citation Format

Share Document