scholarly journals Experimental Study on the Unsteady Natural Cloud Cavities: Influence of Cavitation Number on Cavity Evolution and Pressure Pulsations

2021 ◽  
Vol 9 (5) ◽  
pp. 487
Author(s):  
Tiezhi Sun ◽  
Xiaoshi Zhang ◽  
Jianyu Zhang ◽  
Cong Wang

High-speed underwater vehicles are subjected to complex multiphase turbulent processes, such as the growth, development, shedding, and collapse of cavitation bubbles. To study the cavity evolution and pressure pulsation characteristics, in this paper, cloud cavitation over a conical axisymmetric test body with four pressure sensors is investigated. A multi-field simultaneous measurement experiment method for the natural cavitation of underwater vehicles is proposed to understand the relationship between cavity evolution and instantaneous pressure. The results show that the evolution of cloud cavitation can be mainly divided into three stages: (I) the growth process of the attached cavity, (II) the shedding process of the attached cavity, and (III) the collapse of detached cavities. The evolution of the attached cavity and collapse of the large-scale shedding cavity will cause strong pressure pulsations. It is found that the cavitation number plays an important role in cavitation evolution and pressure pulsation. Interestingly, as the cavitation number decreases, the fluctuation intensity of cavitation increases significantly and gradually presents obvious periodicity. Moreover, the unstable cavitating flow patterns are highly correlated with the time domain and frequency domain characteristics of pressure. Especially, as the cavitation number decreases, the main frequency becomes lower and the pressure band becomes more concentrated.

1989 ◽  
Vol 111 (2) ◽  
pp. 204-210 ◽  
Author(s):  
A. Kubota ◽  
H. Kato ◽  
H. Yamaguchi ◽  
M. Maeda

The structure of flow around unsteady cloud cavitation on a stationary two-dimensional hydrofoil was investigated experimentally using a conditional sampling technique. The unsteady flow velocity around the cloud cavitation was measured by a Laser Doppler Anemometry (LDA) and matched with the unsteady cavitation appearance photographed by a high-speed camera. This matching procedure was performed using data from pressure fluctuation measurements on the foil surface. The velocities were divided into two components using a digital filter, i.e., large-scale (low-frequency) and small-scale (high frequency) ones. The large-scale component corresponds with the large-scale unsteady cloud cavitation motion. In this manner, the unsteady structure of the cloud cavitation was successfully measured. The experimental result showed that the cloud cavitation observed at the present experiment had a vorticity extremum at its center and a cluster containing many small cavitation bubbles. The convection velocity of the cavitation cloud was much lower than the uniform velocity. The small-scale velocity fluctuation was not distributed uniformly in the cavitation cloud, but was concentrated near its boundary.


2021 ◽  
Vol 9 ◽  
Author(s):  
Haiyu Liu ◽  
Pengcheng Lin ◽  
Fangping Tang ◽  
Ye Chen ◽  
Wenpeng Zhang ◽  
...  

In order to study the energy loss of bi-directional hydraulic machinery under cavitation conditions, this paper uses high-speed photography combined with six-axis force and torque sensors to collect cavitating flow images and lift signals of S-shaped hydrofoils simultaneously in a cavitation tunnel. The experimental results show that the stall angle of attack of the S-shaped hydrofoil is at ±12° and that the lift characteristics are almost symmetrical about +1°. Choosing α = +6° and α = −4° with almost equal average lift for comparison, it was found that both cavitation inception and cloud cavitation inception were earlier at α = −4° than at α = +6°, and that the cavitation length at α = −4° grew significantly faster than at α = +6°. When α = +6°, the cavity around the S-shaped hydrofoil undergoes a typical cavitation stage as the cavitation number decreases: from incipient cavitation to sheet cavitation to cloud cavitation. However, when α = −4°, as the cavitation number decreases, the cavitation phase goes through a developmental process from incipient cavitation to sheet cavitation to cloud cavitation to sheet cavitation to cloud cavitation, mainly because the shape of the S-shaped hydrofoil at the negative angle of attack affects the flow of the cavity tails, which is not sufficient to form re-entrant jets that cuts off the sheet cavitation. The formation mechanism of cloud cavitation at the two different angles of attack (α = +6°、−4°) is the same, both being due to the movement of the re-entrant jet leading to the unstable shedding of sheet cavity. The fast Fourier analysis reveals that the fluctuations of the lift signals under cloud cavitation are significantly higher than those under non-cavitation, and the main frequencies of the lift signals under cloud cavitation were all twice the frequency of the cloud cavitation shedding.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012008
Author(s):  
P A Polivanov ◽  
A A Sidorenko

Abstract Experimental studies of pressure pulsations on the surface of a small unmanned aerial vehicle (SUAV) are carried out in a wind tunnel. The onset of the separation flow is determined on the basis of PIV and loads measurements. It is found that an increase of pressure pulsations does not always correspond to flow separation. The paper proposes to use correlation analysis to determine the flow separation by finding large-scale coherent structures generated by the separation.


2016 ◽  
Vol 802 ◽  
pp. 37-78 ◽  
Author(s):  
Harish Ganesh ◽  
Simo A. Mäkiharju ◽  
Steven L. Ceccio

Partial cavitation in the separated region forming from the apex of a wedge is examined to reveal the flow mechanism responsible for the transition from stable sheet cavity to periodically shedding cloud cavitation. High-speed visualization and time-resolved X-ray densitometry measurements are used to examine the cavity dynamics, including the time-resolved void-fraction fields within the cavity. The experimentally observed time-averaged void-fraction profiles are compared to an analytical model employing free-streamline theory. From the instantaneous void-fraction flow fields, two distinct shedding mechanisms are identified. The classically described re-entrant flow in the cavity closure is confirmed as a mechanism for vapour entrainment and detachment that leads to intermittent shedding of smaller-scale cavities. But, with a sufficient reduction in cavitation number, large-scale periodic cloud shedding is associated with the formation and propagation of a bubbly shock within the high void-fraction bubbly mixture in the separated cavity flow. When the shock front impinges on flow at the wedge apex, a large cloud is pinched off. For periodic shedding, the speed of the front in the laboratory frame is of the order of half the free-stream speed. The features of the observed condensation shocks are related to the average and dynamic pressure and void fraction using classical one-dimensional jump conditions. The sound speed of the bubbly mixture is estimated to determine the Mach number of the cavity flow. The transition from intermittent to transitional to strongly periodic shedding occurs when the average Mach number of the cavity flow exceeds that required for the generation of strong shocks.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Junho Kim ◽  
Seung Jin Song

Temperature effects on the critical cavitation number and rotating cavitation in a turbopump inducer have been experimentally investigated in water. Static pressures upstream and downstream of the inducer have been measured to determine the cavitation performance, and cavitation instabilities have been detected using unsteady pressure sensors and a high-speed camera. Two kinds of cavitation instabilities have been identified—rotating cavitation and asymmetric attached cavitation. To quantify temperature effects, nondimensional thermal parameter has been adopted. Increasing water temperature, or increasing nondimensional thermal parameter, lowers the critical cavitation number. Increasing nondimensional thermal parameter also shifts the onset of rotating cavitation to a lower cavitation number and reduces the intensity of rotating cavitation. However, for values larger than 0.540 (340 K, 5000 rpm), the critical cavitation number and the rotating cavitation onset cavitation number become independent of the nondimensional thermal parameter. The onset of the head coefficient degradation correlates with the onset of rotating cavitation regardless of temperature.


2010 ◽  
Vol 660 ◽  
pp. 55-86 ◽  
Author(s):  
M. DETERT ◽  
V. NIKORA ◽  
G. H. JIRKA

This paper presents a comprehensive study of the near-bed hydrodynamics at non-moving streambeds based on laboratory experiments in open-channel flows. Pressure and velocity measurements were made with an array of up to 15 miniaturized piezo-resistive pressure sensors within the bed and slightly above it, and a two-dimensional particle-image-velocimetry (PIV) system measuring in streamwise vertical or horizontal planes. Three different types of bed materials were studied covering typical natural streambed conditions. The range of the global Reynolds number covered in the experiments was from 20000 to 200000. This study provides new insights into the flow structure over gravel beds based on the PIV measurements in both streamwise vertical and horizontal planes. In a streamwise vertical plane, large-scale wedge-like flow structures were observed where a zone of faster fluid over-rolled a zone with slower fluid. The resulting shear layer was inclined along the flow at an angle of 10°–25° to the bed, and was populated with clockwise rotating eddies. This mechanism occurred with sufficient frequency and shape to leave an ‘imprint’ in the velocity statistics. Typically, the described flow pattern is formed near the bed and is approximately scaled with the height of the logarithmic layer, although the biggest structures extended over the whole flow depth. In a horizontal near-bed plane, turbulent structures formed a patched ‘chessboard’ pattern with regions of lower and higher velocities that were elongated in the streamwise direction. Their lateral extension was typically two to four times the equivalent sand roughness with lengths up to several water depths. The dimensions of the regions were increasing linearly with the distance from the bed. These findings are consistent with conceptual models originally developed for smooth-wall flows. They also support observations made in rough-bed flume experiments, numerical simulations and natural rivers. Spatial fields of bed-pressure fluctuations were reconstructed by applying Taylor's frozen turbulence hypothesis on time data obtained with an array of pressure sensors. Based on the conditional sampling of velocity patterns associated with pressure-drop events a distinct bed-destabilizing flow-pressure pattern was identified. If a high-speed fluid in the wake of a large-scale wedge-like flow structure reaches the vicinity of the bed, a phenomenon akin to a Bernoulli effect leads to a distinctive low-pressure pattern. The resulting force may exceed the particles' submerged weight and is assumed to be able to give an initial lift to the particle. As a result, the exposed area of a particle is amplified and its angle of repose is reduced, increasing the probability for entrainment.


2016 ◽  
Vol 812 ◽  
Author(s):  
K. L. de Graaf ◽  
P. A. Brandner ◽  
B. W. Pearce

The physics and spectral content of cloud cavitation about a sphere are investigated in a variable-pressure water tunnel using dynamic surface pressure measurement and high-speed imaging. Experiments are conducted using a polyvinyl chloride sphere at a Reynolds number of $1.5\times 10^{6}$ with cavitation numbers, $\unicode[STIX]{x1D70E}$, ranging from inception to supercavitation. Three distinct shedding regimes are identified: a uni-modal regime for $\unicode[STIX]{x1D70E}>0.9$ and two bi-modal regimes for $0.9>\unicode[STIX]{x1D70E}>0.675$ and $0.675>\unicode[STIX]{x1D70E}>0.3$. For small cavity lengths ($\unicode[STIX]{x1D70E}>0.9$), Kelvin–Helmholtz instability and transition to turbulence in the overlying separated boundary layer form the basis for cavity breakup and coherent vortex formation. At greater lengths ($\unicode[STIX]{x1D70E}<0.9$), larger-scale shedding ensues, driven by coupled re-entrant jet formation and shockwave propagation. Strong adverse pressure gradients about the sphere lead to accumulation and radial growth of re-entrant flow, initiating breakup, from which, in every case, a condensation shockwave propagates upstream causing cavity collapse. When the shedding is most energetic, shockwave propagation upstream may cause large-scale leading edge extinction. The bi-modal response is due to cavity shedding being either axisymmetric or asymmetric. The two bi-modal regimes correspond to $\unicode[STIX]{x1D70E}$ ranges where the cavity and re-entrant jet either remain attached or become detached from the sphere. There is a distinct frequency offset at transition between regimes in both shedding modes. Despite the greater cavity lengths at lower $\unicode[STIX]{x1D70E}$ values, the second bi-modal regime initially exhibits shorter shedding periods due to increased cavity growth rates. The second regime persists until supercavitation develops for $\unicode[STIX]{x1D70E}<0.3$.


Author(s):  
Yongshun Zeng ◽  
Min Yang ◽  
Yuqing Zhai ◽  
Zhifeng Yao ◽  
Fujun Wang ◽  
...  

Abstract The pressure pulsation due to rotor-stator interaction (RSI) is unavoidable for high-speed centrifugal pump when operating under different conditions. The frequency components of pressure pulsation in the vaneless region are the most complex, and the pressure pulsation characteristic plays an important role in pump structural stress analysis. A numerical simulation method is used to obtain the hydraulic performances of a high-speed centrifugal pump with 9857 r/min at the range of flow rates between 48.1 to 155.0 m3/h. The head and efficiency under different operating conditions have good agreement with experimental results, with maximum deviations in 3.82% and 5.37%, respectively. The results show that the level of the pressure pulsation from the inlet to the outlet of the impeller increased gradually, and the pressure pulsations between the short blades are greater than that between the long and short blades. In the diffuser, the pressure pulsation is the highest near the tongue, whereas it is lower in the region between the two tongues, and this region is defined as the vaneless region. The pressure contours in the vaneless region almost have no change, while they near the tongue are densely distributed, revealing the mechanism of uneven pressure pulsation distribution. Moreover, there is a high radial velocity distribution near the tongue in the vaneless region, indicating that there may be a jet-wake pattern occured in this region.


Author(s):  
Baoling Cui ◽  
Jie Chen

Cavitation instabilities in a high-speed inducer at a design flow rate were investigated for different cavitation numbers in numerical simulations and visual experiments. On the basis of a shear stress transport k–ω turbulence model and Zwart–Gerber–Belamri cavitation model, the transient cavitating flow in a high-speed centrifugal pump with an inducer is numerically simulated using ANSYS-CFX 15.0 software. Visual experiments were carried out to capture the evolution of cavitating flow in the inducer by using a high-speed camera. The performance and cavitation characteristic curves from numerical simulation agree with those from experiment. With a decreasing cavitation number, the cavitation development in the high-speed inducer goes through incipient cavitation, developing cavitation, critical cavitation, and deteriorated cavitation and presents vortex cavitation, sheet cavitation, cloud cavitation, backflow cavitation, and a cavitation surge. The region having a high vapor volume fraction basically coincides with the region of low local pressure at the same cavitation number. The position of largish blade loading on the inducer changes with the development of cavitation. A cavitation surge as one type of cavitation instability appears in the inducer at lower cavitation numbers. The drop or rise of the head coefficient is affected by an increasing or decreasing cavitation area in the cycle of a cavitation surge.


Sign in / Sign up

Export Citation Format

Share Document