scholarly journals Estimation of Propagation Speed and Direction of Nonlinear Internal Waves from Underway and Moored Measurements

2021 ◽  
Vol 9 (10) ◽  
pp. 1089
Author(s):  
Seung-Woo Lee ◽  
Sung-Hyun Nam

Propagation speed and direction of nonlinear internal waves (NLIWs) are important parameters for understanding the generation and propagation of waves, and ultimately clarifying regional ocean circulation. However, these parameters cannot be directly measured from in-situ instruments, but can only be estimated from post-processing in situ data. Herein, we present two methods and an optimal approach to estimate the propagation speed and direction of waves using underway and moored observations. The Doppler shift method estimates these parameters from apparent observations concerning a moving ship using the Doppler shift induced by the changing relative distance of the NLIWs from the moving ship. The time lag method estimates the parameters using the distance between two locations of the NLIW observed at different times and the time lag. To optimize the speed and direction of NLIWs, the difference in the propagation direction independently estimated by the two methods needs to be minimized concerning the optimal propagation speed to yield the optimal propagation direction. The methods were applied to two cases observed in the northern East China Sea in May 2015 and August 2018. This study has practical significance for better estimating the propagation speed and direction of NILWs particularly over a broad continental shelf.

2014 ◽  
Vol 31 (3) ◽  
pp. 714-728 ◽  
Author(s):  
Sutara H. Suanda ◽  
John A. Barth ◽  
Rob A. Holman ◽  
John Stanley

Abstract Shore-based video remote sensing is used to observe and continually monitor nonlinear internal waves propagating across the inner shelf. Month-long measurements of velocity from bottom-mounted acoustic Doppler current profilers and temperature from thermistor chains at the 10- and 20-m isobaths are combined with sea surface imagery from a suite of cameras (Argus) to provide a kinematic description of 11 borelike internal waves as they propagate across the central Oregon inner shelf. The surface expression of these waves, commonly seen by eye as alternating rough and smooth bands, are identified by increased pixel intensity in Argus imagery (average width 39 ± 6 m), caused by the convergence of internal wave-driven surface currents. These features are tracked through time and space using 2-min time exposure images and then compared to wave propagation speed and direction from in situ measurements. Internal waves are refracted by bathymetry, and the measured wave speed (~0.15 m s−1) is higher than predicted by linear theory (<0.1 m s−1). Propagating internal waves are also visible in subsampled Argus pixel time series (hourly collections of 17 min worth of 2-Hz pixel intensity from a subset of locations), thus extending the observational record to times without an in situ presence. Results from this 5-month record show that the preferred sea state for successful video observations occurs for wind speeds of 2–5 m s−1. Continued video measurements and analysis of extensive existing Argus data will allow a statistical estimate of internal wave occurrence at a variety of inner-shelf locations.


2019 ◽  
Vol 49 (8) ◽  
pp. 2133-2145 ◽  
Author(s):  
Jianjun Liang ◽  
Xiao-Ming Li ◽  
Jin Sha ◽  
Tong Jia ◽  
Yongzheng Ren

AbstractThe life cycle of nonlinear internal waves (NIWs) to the southeast of Hainan Island in the northwestern South China Sea is investigated using synergistic satellite observations, in situ measurements, and numerical simulations. A three-dimensional, fully nonlinear and nonhydrostatic model with ultrafine resolution shows that a diurnal internal tide emanates from a sill in the Xisha Islands at approximately 215 km away from the local shelf break. The internal tide transits the deep basin toward the shelf break and reflects at the sea bottom and seasonal thermocline in the form of a wave beam. Arriving at the shelf break, the internal tide undergoes nonlinear transformation and produces an undular bore. Analyses of in situ measurements reveal that the undular bore appears as sharp depressions of the strong near-surface seasonal thermocline. The undular bore gradually evolves into an internal solitary wave train on the midshelf, which was detected by the spaceborne synthetic aperture radar. This finding has great implications for investigating NIWs in other coastal oceans where waves are controlled by remotely generated internal tides.


2020 ◽  
Author(s):  
Seung-Woo Lee ◽  
SungHyun Nam

<p>Oceanic nonlinear internal waves (NLIWs) play an important role in regional circulation, biogeochemistry, energetics, vertical mixing, and underwater acoustics, causing hazards to marine engineering and submarine navigation. Mainly generated by the interaction of the barotropic tides with the bottom topography, they propagate and transform due to wave-wave interaction process. Here, we present characteristics of first two modes of NLIWs observed using high-resolution spatiotemporal data collected in a relatively flat area in the northeastern East China Sea in May 2015. Six groups of NLIWs were identified from the observations: four groups of mode-1 and two groups of mode-2. The amplitude, propagation speed, and characteristic width of mode-1 NLIWs had ranges of 4–16 m, 0.53–0.56 m s<sup>-1</sup>, and 310–610 m, respectively. The mode-2 NLIWs propagate eastward slowly with a speed less than 0.37 m s<sup>-1</sup> with a comparable amplitude of 4–14 m and longer characteristic width of 540–1920 m. Intermodal interactions may take a role in the evolution of mode-1 NLIWs west of the observational area. Our results characterizing the two modes of NLIWs highlight the significance of propagation and transformation of NLIWs and their modal interactions on a broad and shallow shelf.</p>


2009 ◽  
Vol 39 (9) ◽  
pp. 2230-2246 ◽  
Author(s):  
Vasiliy Vlasenko ◽  
Jose C. Sanchez Garrido ◽  
Nataliya Stashchuk ◽  
Jesus Garcia Lafuente ◽  
Miguel Losada

Abstract The modeling of large-amplitude internal waves (LAIWs) propagating in the Strait of Gibraltar is carried out using a fully nonlinear nonhydrostatic numerical model. The focus of the modeling efforts was on three-dimensional peculiarities of LAIW evolution, namely, cross-strait variability, interaction with lateral boundaries (including wave breaking and water mixing), radiation of secondary waves from orographic features, and interaction of secondary scattered internal waves. The along-channel propagation of packets of LAIWs reveals remarkable three-dimensional behavior. Due to the Coriolis force and multiple reflections from the lateral boundaries, the largest leading LAIW loses its energy much faster than that in the packet tail, which captures the scattered energy from the leading wave as it propagates and grows in amplitude. As a result of the energy transfer, the initially rank-ordered wave packet loses its regular structure to evolve into a non-rank-ordered wave train. In situ data collected in the eastern part of the Strait of Gibraltar confirm the idea that the non-rank-ordered structure is a common feature of internal wave packets emerging from the strait into the Alboran Sea.


2017 ◽  
Vol 9 (1) ◽  
pp. 293-315 ◽  
Author(s):  
Ahmad Al Bitar ◽  
Arnaud Mialon ◽  
Yann H. Kerr ◽  
François Cabot ◽  
Philippe Richaume ◽  
...  

Abstract. The objective of this paper is to present the multi-orbit (MO) surface soil moisture (SM) and angle-binned brightness temperature (TB) products for the SMOS (Soil Moisture and Ocean Salinity) mission based on a new multi-orbit algorithm. The Level 3 algorithm at CATDS (Centre Aval de Traitement des Données SMOS) makes use of MO retrieval to enhance the robustness and quality of SM retrievals. The motivation of the approach is to make use of the longer temporal autocorrelation length of the vegetation optical depth (VOD) compared to the corresponding SM autocorrelation in order to enhance the retrievals when an acquisition occurs at the border of the swath. The retrieval algorithm is implemented in a unique operational processor delivering multiple parameters (e.g. SM and VOD) using multi-angular dual-polarisation TB from MO. A subsidiary angle-binned TB product is provided. In this study the Level 3 TB V310 product is showcased and compared to SMAP (Soil Moisture Active Passive) TB. The Level 3 SM V300 product is compared to the single-orbit (SO) retrievals from the Level 2 SM processor from ESA with aligned configuration. The advantages and drawbacks of the Level 3 SM product (L3SM) are discussed. The comparison is done on a global scale between the two datasets and on the local scale with respect to in situ data from AMMA-CATCH and USDA ARS Watershed networks. The results obtained from the global analysis show that the MO implementation enhances the number of retrievals: up to 9 % over certain areas. The comparison with the in situ data shows that the increase in the number of retrievals does not come with a decrease in quality, but rather at the expense of an increased time lag in product availability from 6 h to 3.5 days, which can be a limiting factor for applications like flood forecast but reasonable for drought monitoring and climate change studies. The SMOS L3 soil moisture and L3 brightness temperature products are delivered using an open licence and free of charge using a web application (https://www.catds.fr/sipad/). The RE04 products, versions 300 and 310, used in this paper are also available at ftp://ext-catds-cpdc:[email protected]/Land_products/GRIDDED/L3SM/RE04/.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1954
Author(s):  
Maruf Mortula ◽  
Tarig Ali ◽  
Abdallah Bachir ◽  
Ahmed Elaksher ◽  
Mohamed Abouleish

The last few decades have witnessed a tremendous increase in nutrient levels (phosphorus and nitrogen) in coastal water leading to excessive algal growth (Eutrophication). The presence of large amounts of algae turns the water’s color into green or red, in the case of algal blooms. Chlorophyll-a is often used as an indicator of algal biomass. Due to increased human activities surrounding Dubai creek, there have been eutrophication concerns given the levels of nutrients in that creek. This study aims to map chlorophyll-a in Dubai Creek from WorldView-2 imagery and explore the relationship between chlorophyll-a and other eutrophication indicators. A geometrically- and atmospherically-corrected WorldView-2 image and in-situ data have been utilized to map chlorophyll-a in the creek. A spectral model, developed from the WorldView-2 multispectral image to monitor Chlorophyll-a concentration, yielded 0.82 R2 with interpolated in-situ chlorophyll-a data. To address the time lag between the in-situ data and the image, Landsat 7 Enhanced Thematic Mapper Plus (ETM+) images were used to demonstrate the accuracy of the WorldView-2 model. The images, acquired on 20 May and 23 July 2012, were processed to extract chlorophyll-a band ratios (Band 4/Band 3) following the standard approach. Based on the availability, the 20 May image acquisition date is the closest to the middle of Quarter 2 (Q2) of the in-situ data (15 May). The 23 July 2012 image acquisition date is the closest to the WorldView-2 image date (24 July). Another model developed to highlight the relationship between spectral chlorophyll-a levels, and total nitrogen and orthophosphate levels, yielded 0.97 R2, which indicates high agreement. Furthermore, the generated models were found to be useful in mapping chlorophyll-a, total nitrogen, and orthophosphate, without the need for costly in-situ data acquisition efforts.


2016 ◽  
Vol 33 (4) ◽  
pp. 839-846 ◽  
Author(s):  
Mohsen Badiey ◽  
Lin Wan ◽  
James F. Lynch

AbstractDuring the Shallow Water Acoustic Experiment 2006 (SW06) conducted on the New Jersey continental shelf in the summer of 2006, detailed measurements of the ocean environment were made along a fixed reference track that was parallel to the continental shelf. The time-varying environment induced by nonlinear internal waves (NLIWs) was recorded by an array of moored thermistor chains and by X-band radars from the attending research vessels. Using a mapping technique, the three-dimensional (3D) temperature field for over a month of NLIW events is reconstructed and analyzed to provide a statistical summary of important NLIW parameters, such as the NLIW propagation speed, direction, and amplitude. The results in this paper can be used as a database for studying the NLIW generation, propagation, and fidelity of nonlinear internal wave models.


2009 ◽  
Vol 26 (3) ◽  
pp. 615-625 ◽  
Author(s):  
Ramzi Mirshak ◽  
Daniel E. Kelley

Abstract Internal waves heave the background flow through which they propagate. If the background flow is vertically sheared, the high-pass-filtered velocity field will thus contain signals of both the wave velocity and the heaved flow. Under conditions of large wave amplitude and large background shear—a common situation for nonlinear internal waves in coastal waters—the velocity fluctuations caused by wave heaving of the background flow can be comparable to the wave velocity itself. This complicates the inference of wave properties such as energy flux and propagation direction. The present study deals with methods to infer propagation direction in such situations. Attention is given to three methods that may be applied to acoustic Doppler current profiler measurements: a “filtering” method that estimates wave signals from high-pass-filtered time series, a “beamwise” method that infers wave direction from lagged correlations of echo intensity between the spatially separated acoustic beams of the profiler, and a “modal” method that separates background and wave signals by regressing the high-pass-filtered velocity field onto a normal-mode wave model. The methods are tested using synthetic datasets. The results suggest that the filtering method is biased by wave heaving of the background shear, while the beamwise and modal methods are resistant to heaving. The beamwise method provides accurate predictions of wave propagation angle for cases in which the measurements have high temporal resolution and the environment exhibits no depth-averaged background flow. The limitation on depth-averaged flow is relaxed for the modal method, but it requires the measurement of stratification. These issues are illustrated, and the applicability of these methods is explored with a series of sensitivity tests, and it is found that the different methods perform well under different circumstances.


2011 ◽  
Vol 41 (5) ◽  
pp. 994-1008 ◽  
Author(s):  
W. J. Teague ◽  
H. W. Wijesekera ◽  
W. E. Avera ◽  
Z. R. Hallock

Abstract Closely spaced observations of nonlinear internal waves (NLIWs) were made on the outer continental shelf off New Jersey in June 2009. Nearly full water column measurements of current velocity were made with four acoustic Doppler current profilers (ADCPs) that were moored about 5 km apart on the bottom along a line approximately normal to the bathymetry between water depths of 67 and 92 m. Density profiles were obtained from two vertical strings of temperature and conductivity sensors that were deployed near each of the interior ADCP moorings. In addition, a towed ScanFish provided profiles and fixed-level records of temperature and salinity through several NLIW packets near the moorings. Several case studies were selected to describe the propagation of the NLIWs. One to three solitary waves of depression were observed in five selected packets. There were also occurrences of multiple-phase dispersive wave packets. The average propagation speed corrected for advection of the observed waves was 0.51 ± 0.09 m s−1. The waves were directed primarily shoreward (~northwestward) along the mooring line with average wavelengths and periods of about 300 m and 10 min, respectively. Wave amplitudes and energies decreased with decreasing water depth. The observed wave parameters can be locally described by a two-layer Korteweg–de Vries (KdV) model, except for the decreasing amplitudes, which may be due to shear-induced dissipation and/or bottom drag. The various complementary observations utilized in this study present a unique description of NLIWs.


2021 ◽  
Author(s):  
Seung-Woo Lee ◽  
SungHyun Nam

<p>Oceanic nonlinear internal waves (NLIWs) play an important role in regional circulation, biogeochemistry, energetics, vertical mixing, underwater acoustics, marine engineering, and submarine navigation, most commonly generated by the interaction between barotropic tides and bathymetry. Here, we present characteristics of first mode NLIWs observed using high-resolution in-situ data collected using moored and underway temperature sensors in a relatively flat bottom in the northeastern East China Sea during May 15-28, 2015. During the experiment, totally 34 events of first mode NLIWs were identified and characterized with amplitude of 4–16 m, characteristic width of 310–610 m, propagation speed of 0.53–0.56 m s<sup>-1</sup>, and propagation direction (mainly southwestward propagation), respectively. Most NLIWs were observed during period of spring tide with phases locked to semidiurnal barotropic tides. Generation and propagation of the first mode NLIWs observed in the region are discussed in relation to satellite images and historical hydrographic data collected in the region. Our results support significance of first mode NLIWs and their interactions on turbulent mixing and regional circulation particularly in a broad and shallow continental shelves where the NLIWs generated from multiple sources propagate into multi-directions experiencing wave-wave interactions.</p>


Sign in / Sign up

Export Citation Format

Share Document