scholarly journals Thermogenic Characterization and Antifungal Susceptibility of Candida auris by Microcalorimetry

2019 ◽  
Vol 5 (4) ◽  
pp. 103 ◽  
Author(s):  
Mariagrazia Di Luca ◽  
Anna Koliszak ◽  
Svetlana Karbysheva ◽  
Anuradha Chowdhary ◽  
Jacques Meis ◽  
...  

Candida auris has emerged globally as a multidrug-resistant fungal pathogen. Isolates of C. auris are reported to be misidentified as Candida haemulonii. The aim of the study was to compare the heat production profiles of C. auris strains and other Candida spp. and evaluate their antifungal susceptibility using isothermal microcalorimetry. The minimum heat inhibitory concentrations (MHIC) and the minimum biofilm fungicidal concentration (MBFC) were defined as the lowest antimicrobial concentration leading to the lack of heat flow production after 24 h for planktonic cells and 48 h for biofilm-embedded cells. C. auris exhibited a peculiar heat production profile. Thermogenic parameters of C. auris suggested a slower growth rate compared to Candida lusitaniae and a different distinct heat profile compared to that of C. haemulonii species complex strains, although they all belong to the Metschnikowiaceae clade. Amphotericin B MHIC and MBFC were 0.5 µg/mL and ≥8 µg/mL, respectively. C. auris strains were non-susceptible to fluconazole at tested concentrations (MHIC > 128 µg/mL, MBFC > 256 µg/mL). The heat curve represents a fingerprint of C. auris, which distinguished it from other species. Treatment based on amphotericin B represents a potential therapeutic option for C. auris infection.

2017 ◽  
Vol 4 (suppl_1) ◽  
pp. S82-S82
Author(s):  
Hamid Badalii

Abstract Background Blood stream infections due to Candida auris are related to a high mortality rate and treatment failure attributed to resistance to fluconazole, voriconazole, amphotericin B, and caspofungin. Thus, the precise identification of agents and in vitro antifungal susceptibility testing is highly recommended. Novel therapeutic strategies, such as combination therapy, are essential for increasing the efficacy and reducing the toxicity of antifungal agents. Therefore, we investigated the in vitro combination of micafungin plus voriconazole against multidrug-resistant C. auris isolated from cases of candidemia. Methods The in vitro interactions between echinocandins and azoles were determined against ten multidrug-resistant Candida auris strains by using a microdilution checkerboard technique. Results Results revealed that MICs range for voriconazole and micafungin were 0.5–8 and 0.25–8 mg/l, respectively. The checkerboard analysis revealed that the combination of micafungin with voriconazole exhibited synergistic activity against all 10 multidrug-resistant C. auris isolates (FICI range: 0.15–0.5). Overall, no antagonistic effects were observed in this experiments. Conclusion In vitro studies have previously suggested that among azoles isavuconazole and posaconazole are more active drugs against C. auris. In addition, the majority of isolates reported are resistant to fluconazole. Remarkably, unsuccessful treatment of C. auris infections with fluconazole, voriconazole, amphotericin B, caspofungin, and anidulafungin has been already on record. Here in we demonstrates that interaction between micafungin with voriconazole exhibited synergistic activity against multidrug-resistant C. auris isolates. It seems that lower concentrations of drugs cause fewer side-effects and improve the treatment outcomes. However, in vivo studies with suitable animal models of C. auris infection is highly recommended. Disclosures All authors: No reported disclosures.


2021 ◽  
Vol 9 (A) ◽  
pp. 397-402
Author(s):  
Sahar Mohammed Khairat ◽  
Mervat Gaber Anany ◽  
Maryam Mostafa Ashmawy ◽  
Amira Farouk Ahmed Hussein

BACKGROUND: Candida is considered the most common cause of opportunistic infections in the world. Increased use of antifungal agents may have led to increasing resistance of Candida for antifungals and may be related to therapeutic failures. Recently, a multidrug-resistant Candida auris has immerged causing outbreaks in several countries all over the world. This discovered superbug is widely spread causing a broad range of health care-associated infections. AIM: This study aims to set a protocol for the identification and detection of the prevalence of C. auris in tertiary Egyptian hospitals following the center of disease and control (CDC) methodology. METHODOS: Over almost 2 years, 400 Candida isolates were collected from different wards of Cairo University Hospitals. Identification of species of all isolates was done by germ tube test followed by sub-culturing on chromogenic agar media for confirmation. Candida non-albicans isolates were further subjected to thermotolerance. Isolates that grew in 42°C were further identified by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry for definite species identification. Antifungal susceptibility using E-test was done for isolates identified by MALDI to detect resistance patterns. RESULTS: Among the 400 isolates, 227 (56.75%) were Candida albicans while 180 (43.25%) were non-albicans Candida. Candida non-albicans was classified by Chromagar as following; 25 (13.8%) were Candida tropicalis, 43 (23.8%) were Candida krusei, and 112 (62.2%) were other Candida spp. (Candida glabrata, Candida kefyr, Candida parapsilosis, and Candida lusitaniae). Using thermotolerance, 10 isolates grew at 42°C suspecting C. auris. MALDI-TOF was used for definite and final identification; five isolates were identified as C. glabrata, four as C. krusei, and one C. kefyr. Antifungal susceptibility testing of the 10 identified isolates revealed total resistance to fluconazole. CONCLUSION: Following the set protocol for identification based on CDC guidelines, C. auris is not prevalent in Egyptian hospitals. Fluconazole resistance is on the surge among candida isolates. Further studies on a bigger scale including larger number of hospitals are recommended.


Author(s):  
A. Espinel-Ingroff ◽  
M. Sasso ◽  
J. Turnidge ◽  
M. Arendrup ◽  
F. Botterel ◽  
...  

Susceptibility testing is an important tool in the clinical setting; its utility is based on the availability of categorical endpoints, breakpoints (BPs) or epidemiological cutoff values (ECVs/ECOFFs). CLSI and EUCAST have developed antifungal susceptibility testing, BPs and ECVs for some fungal species. Although the Concentration Gradient Strip BioMerieux Etest is useful for routine testing in the clinical laboratory, ECVs are not available for all agent/species; the lack of clinical data precludes development of BPs. We re-evaluated and consolidated Etest data points from three previous studies, and included new data. We defined ECOFFinder Etest ECVs for three sets of species/agent combinations: fluconazole, posaconazole and voriconazole and 8 Candida spp.; amphotericin B and 3 non-prevalent Candida spp.; and caspofungin and 5 Aspergillus spp. The total of Etest MICs from 23 laboratories (Europe, the Americas, South Africa) included (antifungal agent/dependent): 17,242 Candida albicans , 244 C. dubliniensis , 5,129 C. glabrata species complex (SC), 275 C. guilliermondii ( Meyerozyma guilliermondii ), 1,133 C. krusei ( Pichia kudriavzevii ), 933 C. kefyr ( Kluyveromyces marxianus ), 519 C. lusitaniae ( Clavispora lusitaniae ), 2,947 C. parapsilosis SC, 2,214 C. tropicalis , 3,212 Aspergillus fumigatus , 232 A. flavus , 181 A. niger , and 267 A. terreus SC isolates. Triazole MICs for 66 confirmed non-wild-type (non-WT) Candida isolates were available ( ERG11 point mutations). Distributions fulfilling CLSI ECV criteria were pooled and ECOFFinder Etest ECVs were established for triazoles (9 Candida spp.); amphotericin B (3 less-prevalent Candida spp.) and caspofungin (4 Aspergillus spp.). Etest fluconazole ECVs could be good detectors of Candida non-WT isolates (59/61 Non-WT: 4 of 6 species).


2019 ◽  
Vol 63 (12) ◽  
Author(s):  
A. L. Bidaud ◽  
F. Botterel ◽  
A. Chowdhary ◽  
E. Dannaoui

ABSTRACT Candida auris is an emerging, multidrug-resistant pathogen responsible for invasive hospital-acquired infections. Flucytosine is an effective anti-Candida species drug, but which cannot be used as a monotherapy because of the risk of development of resistant mutants during treatment. It is, therefore, noteworthy to test possible combinations with flucytosine that may have a synergistic interaction. In this study, we determined the in vitro interaction between flucytosine and amphotericin B, micafungin, or voriconazole. These combinations have been tested against 15 C. auris isolates. The MIC ranges (geometric mean [Gmean]) of flucytosine, amphotericin B, micafungin, and voriconazole were 0.125 to 1 μg/ml (0.42 μg/ml), 0.25 to 1 μg/ml (0.66 μg/ml), 0.125 to 0.5 μg/ml (0.3 μg/ml), and 0.03 to 4 μg/ml (1.05 μg/ml), respectively. When tested in combination, indifferent interactions were mostly observed with fractional inhibitory concentration index values from 0.5 to 1, 0.31 to 1.01, and 0.5 to 1.06 for the combinations of flucytosine with amphotericin B, micafungin, and voriconazole, respectively. A synergy was observed for the strain CBS 10913 from Japan. No antagonism was observed for any combination. The combination of flucytosine with amphotericin B or micafungin may be relevant for the treatment of C. auris infections.


2019 ◽  
Vol 5 (4) ◽  
pp. 92 ◽  
Author(s):  
Wall ◽  
Herrera ◽  
Lopez-Ribot

Background. Candida auris has spread rapidly around the world as a causative agent of invasive candidiasis in health care facilities and there is an urgent need to find new options for treating this emerging, often multidrug-resistant pathogen. Methods. We screened the Pathogen Box® chemical library for inhibitors of C. auris strain 0390, both under planktonic and biofilm growing conditions. Results. The primary screen identified 12 compounds that inhibited at least 60% of biofilm formation or planktonic growth. After confirmatory dose-response assays, iodoquinol and miltefosine were selected as the two main leading repositionable compounds. Iodoquinol displayed potent in vitro inhibitory activity against planktonic C. auris but showed negligible inhibitory activity against biofilms; whereas miltefosine was able to inhibit the growth of C. auris under both planktonic and biofilm-growing conditions. Subsequent experiments confirmed their activity against nine other strains C. auris clinical isolates, irrespective of their susceptibility profiles against conventional antifungals. We extended our studies further to seven different species of Candida, also with similar findings. Conclusion. Both drugs possess broad spectrum of activity against Candida spp., including multiple strains of the emergent C. auris, and may constitute promising repositionable options for the development of novel therapeutics for the treatment of candidiasis.


2020 ◽  
Vol 6 (3) ◽  
pp. 110 ◽  
Author(s):  
Soraia Lopes Lima ◽  
Elaine Cristina Francisco ◽  
João Nóbrega de Almeida Júnior ◽  
Daniel Wagner de Castro Lima Santos ◽  
Fabiane Carlesse ◽  
...  

There is worldwide concern with the increasing rates of infections due to multiresistant Candida isolates reported in tertiary medical centers. We checked for historical trends in terms of prevalence rates and antifungal susceptibility of the Candida haemulonii species complex in our yeast stock culture collected during the last 11 years. The isolates were identified by sequencing the rDNA internal transcribed spacer (ITS) region, and antifungal susceptibility tests for amphotericin B, voriconazole, fluconazole, anidulafungin, and 5-fluorocytosine were performed by the Clinical and Laboratory Standards Institute (CLSI) microbroth method. A total of 49 isolates were identified as Candida haemulonii sensu stricto (n = 21), followed by C. haemulonii var. vulnera (n = 15) and C. duobushaemulonii (n = 13), including 38 isolates cultured from patients with deep-seated Candida infections. The prevalence of the C. haemulonii species complex increased from 0.9% (18 isolates among 1931) in the first period (December 2008 to June 2013) to 1.7% (31 isolates among 1868) in the second period (July 2014 to December 2019) of analysis (p = 0.047). All isolates tested exhibited high minimum inhibition concentrations for amphotericin B and fluconazole, but they remained susceptible to 5-fluorocytosine and anidulafungin. We were able to demonstrate the increased isolation of the multiresistant Candida haemulonii species complex in our culture collection, where most isolates were cultured from patients with deep-seated infections.


Antibiotics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 539
Author(s):  
Mahmoud Ghannoum ◽  
Maiken Cavling Arendrup ◽  
Vishnu P. Chaturvedi ◽  
Shawn R. Lockhart ◽  
Thomas S. McCormick ◽  
...  

Candida auris is an emerging multidrug-resistant fungal pathogen reported worldwide. Infections due to C. auris are usually nosocomial and associated with high rates of fluconazole resistance and mortality. Echinocandins are utilized as the first-line treatment. However, echinocandins are only available intravenously and are associated with increasingly higher rates of resistance by C. auris. Thus, a need exists for novel treatments that demonstrate potent activity against C. auris. Ibrexafungerp is a first-in-class triterpenoid antifungal agent. Similar to echinocandins, ibrexafungerp inhibits (1→3)-β-D-glucan synthase, a key component of the fungal cell wall, resulting in fungicidal activity against Candida spp. Ibrexafungerp demonstrates broad in vitro activity against various Candida spp. including C. auris and C. auris isolates with fks mutations. Minimum inhibitory concentration (MIC50 and MIC90) values in >400 C. auris isolates were 0.5 μg/mL and 1.0 μg/mL, respectively. Clinical results were reported for two patients with invasive candidiasis or candidemia due to C. auris treated during the CARES (Candidiasis Caused by Candida Auris) trial, an ongoing open-label study. These patients experienced a complete response after treatment with ibrexafungerp. Thus, ibrexafungerp represents a promising new antifungal agent for treating C. auris infections.


2017 ◽  
Vol 55 (8) ◽  
pp. 2445-2452 ◽  
Author(s):  
Milena Kordalewska ◽  
Yanan Zhao ◽  
Shawn R. Lockhart ◽  
Anuradha Chowdhary ◽  
Indira Berrio ◽  
...  

ABSTRACT Candida auris is an emerging multidrug-resistant fungal pathogen causing nosocomial and invasive infections associated with high mortality. C. auris is commonly misidentified as several different yeast species by commercially available phenotypic identification platforms. Thus, there is an urgent need for a reliable diagnostic method. In this paper, we present fast, robust, easy-to-perform and interpret PCR and real-time PCR assays to identify C. auris and related species: Candida duobushaemulonii , Candida haemulonii , and Candida lusitaniae . Targeting rDNA region nucleotide sequences, primers specific for C. auris only or C. auris and related species were designed. A panel of 140 clinical fungal isolates was used in both PCR and real-time PCR assays followed by electrophoresis or melting temperature analysis, respectively. The identification results from the assays were 100% concordant with DNA sequencing results. These molecular assays overcome the deficiencies of existing phenotypic tests to identify C. auris and related species.


2015 ◽  
Vol 53 (10) ◽  
pp. 3176-3181 ◽  
Author(s):  
Frédéric Lamoth ◽  
Barbara D. Alexander

Invasive mold infections are life-threatening diseases for which appropriate antifungal therapy is crucial. Their epidemiology is evolving, with the emergence of triazole-resistantAspergillusspp. and multidrug-resistant non-Aspergillusmolds. Despite the lack of interpretive criteria, antifungal susceptibility testing of molds may be useful in guiding antifungal therapy. The standard broth microdilution method (BMD) is demanding and requires expertise. We assessed the performance of a commercialized gradient diffusion method (Etest method) as an alternative to BMD. The MICs or minimal effective concentrations (MECs) of amphotericin B, voriconazole, posaconazole, caspofungin, and micafungin were assessed for 290 clinical isolates of the most representative pathogenic molds (154Aspergillusand 136 non-Aspergillusisolates) with the BMD and Etest methods. Essential agreements (EAs) within ±2 dilutions of ≥90% between the two methods were considered acceptable. EAs for amphotericin B and voriconazole were >90% for most potentially susceptible species. For posaconazole, the correlation was acceptable forMucoromycotinabut Etest MIC values were consistently lower forAspergillusspp. (EAs of <90%). Excellent EAs were found for echinocandins with highly susceptible (MECs of <0.015 μg/ml) or intrinsically resistant (MECs of >16 μg/ml) strains. However, MEC determinations lacked consistency between methods for strains exhibiting mid-range MECs for echinocandins. We concluded that the Etest method is an appropriate alternative to BMD for antifungal susceptibility testing of molds under specific circumstances, including testing with amphotericin B or triazoles for non-Aspergillusmolds (MucoromycotinaandFusariumspp.). Additional study of molecularly characterized triazole-resistantAspergillusisolates is required to confirm the ability of the Etest method to detect voriconazole and posaconazole resistance amongAspergillusspp.


Sign in / Sign up

Export Citation Format

Share Document