scholarly journals Role of Volatiles from the Endophytic Fungus Trichoderma asperelloides PSU-P1 in Biocontrol Potential and in Promoting the Plant Growth of Arabidopsis thaliana

2020 ◽  
Vol 6 (4) ◽  
pp. 341
Author(s):  
Nongnat Phoka ◽  
Nakarin Suwannarach ◽  
Saisamorn Lumyong ◽  
Shin-ichi Ito ◽  
Kenji Matsui ◽  
...  

Fungal volatile organic compounds (VOCs) emitted by Trichoderma species interact with a plant host and display multifaceted mechanisms. In this study, we investigated the antifungal activity of VOCs emitted by Trichoderma asperelloides PSU-P1 against fungal pathogens, as well as the ability of VOCs to activate defense responses and to promote plant growth in Arabidopsis thaliana. The strain’s VOCs had remarkable antifungal activity against fungal pathogens, with an inhibition range of 15.92–84.95% in a volatile antifungal bioassay. The VOCs of T. asperelloides PSU-P1 promoted the plant growth of A. thaliana, thereby increasing the fresh weight, root length, and chlorophyll content in the VOC-treated A. thaliana relative to those of the control. High expression levels of the chitinase (CHI) and β-1,3-glucanase (GLU) genes were found in the VOC-treated A. thaliana by quantitative reverse transcription polymerase chain reaction (RT-PCR). The VOC-treated A. thaliana had higher defense-related enzyme (peroxidase (POD)) and cell wall-degrading enzyme (chitinase and β-1,3-glucanase) activity than in the control. The headspace VOCs produced by PSU-P1, trapped with solid phase microextraction, and tentatively identified by gas chromatography–mass spectrometry, included 2-methyl-1-butanol, 2-pentylfuran, acetic acid, and 6-pentyl-2H-pyran-2-one (6-PP). The results suggest that T. asperelloides PSU-P1 emits VOCs responsible for antifungal activity, for promoting plant growth, and for inducing defense responses in A. thaliana.

2021 ◽  
Vol 7 (3) ◽  
pp. 187
Author(s):  
On-Uma Ruangwong ◽  
Prisana Wonglom ◽  
Nakarin Suwannarach ◽  
Jaturong Kumla ◽  
Narit Thaochan ◽  
...  

Soil microorganisms are well studied for their beneficial effects on plant growth and their impact on biocontrol agents. The production of volatile antifungal compounds emitted from soil fungi is considered to be an effective ability that can be applied in biofumigants in the control of plant diseases. A soil fungus, Trichoderma asperelloides TSU1, was isolated from flamingo flower cultivated soil and identified on the basis of the morphology and molecular analysis of the internal transcribed spacer (ITS), rpb2, and tef1-α genes. To test T. asperelloides TSU1-produced volatile organic compounds (VOCs) with antifungal activity, the sealed plate method was used. The VOCs of T. asperelloides TSU1 inhibited the mycelial growth of fungal pathogens that were recently reported as emerging diseases in Thailand, namely, Corynespora cassiicola, Fusarium incarnatum, Neopestalotiopsis clavispora, N. cubana, and Sclerotium rolfsii, with a percentage inhibition range of 38.88–68.33%. Solid-phase microextraction (SPME) was applied to trap VOCs from T. asperelloides TSU1 and tentatively identify them through gas chromatography–mass spectrometry (GC/MS). A total of 17 compounds were detected in the VOCs of T. asperelloides TSU1, and the dominant compounds were identified as fluoro(trinitro)methane (18.192% peak area) and 2-phenylethanol (9.803% peak area). Interestingly, the commercial 2-phenyethanol showed antifungal activity against fungal pathogens that were similar to the VOCs of T. asperelloides TSU1 by bioassay. On the basis of our study’s results, T. asperelloides TSU1 isolated from soil displayed antifungal abilities via the production of VOCs responsible for restricting pathogen growth.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 476e-476
Author(s):  
Craig S. Charron ◽  
Catherine O. Chardonnet ◽  
Carl E. Sams

The U.S. Clean Air Act bans the use of methyl bromide after 2001. Consequently, the development of alternative methods for control of soilborne pathogens is imperative. One alternative is to exploit the pesticidal properties of macerated tissues of Brassica spp. This study tested the potential of several Brassica spp. for control of fungal pathogens. Pythium ultimum Trow or Rhizoctonia solani Kühn plugs on potato-dextrose agar on petri dishes were sealed in 500-ml glass jars (at 22 °C) containing macerated leaves (10 g) from one of six Brassica spp. Radial growth was measured 24, 48, and 72 h after inoculation. Indian mustard (B. juncea) was the most suppressive, followed by `Florida Broadleaf' mustard (B. juncea). Volatile compounds in the jars were sampled with a solid-phase microextraction device (SPME) and identified by gas chromatography-mass spectrometry (GC-MS). Allyl isothiocyanate (AITC) comprised over 90% of the total volatiles measured from Indian mustard and `Florida Broadleaf' mustard. Isothiocyanates were detected in jars with all plants except broccoli. (Z)-3-hexenyl acetate was emitted by all plants and was the predominant volatile of `Premium Crop' broccoli (B. oleracea L. var. italica), `Michihili Jade Pagoda' Chinese cabbage (B. pekinensis), `Charmant' cabbage (B. oleracea L. var. capitata), and `Blue Scotch Curled' kale (B. oleracea L. var. viridis). To assess the influence of AITC on radial growth of P. ultimum and R. solani, AITC was added to jars to give headspace concentrations of 0.10, 0.20, and 0.30 mg·L–1 (mass of AITC per volume of headspace). Growth of both fungi was inhibited by 0.10 mg·L–1 AITC. 0.20 mg·L–1 AITC was fungicidal to P. ultimum although the highest AITC level tested (0.30 mg·L–1) did not terminate R. solani growth. These results indicate that residues from some Brassica spp. may be a viable part of a soilborne pest control strategy.


2021 ◽  
Vol 44 (2) ◽  
pp. 69-84
Author(s):  
Farhana Tasnim Chowdhury ◽  
Nazia Rifat Zaman ◽  
Mohammad Riazul Islam ◽  
Haseena Khan

Plant growth promoting rhizobacteria (PGPR) residing in soil rhizosphere provide enormous beneficial effects to a plant host producing diverse secondary metabolites and enzymes useful for plant growth and protection. Siderophores, antibiotics, volatile compounds and hydrolytic enzymes are the major molecules secreted by the PGPRs, which have substantial antifungal properties and can provide plant protection. These compounds are responsible for the lysis and hyperparasitism of antagonists against deleterious fungal pathogens. Siderophore-producing PGPRs function by depriving the pathogen of iron nutrition. Antibiotics have been reported to be involved in the suppression of different fungal pathogens by inducing fungistasis, inhibition of spore germination, lysis of fungal mycelia. The PGPRs also secrete a wide range of low molecular weight volatile organic compounds (VOCs) that inhibit mycelial growth, sporulation, germination of phytophathogenic fungi, etc. Hydrolytic enzymes, mostly chitinase, protease and cellulose, lyse the cell wall of fungi. Therefore, plant growth-promoting rhizobacteria can be considered as an effective, eco-friendly, and sustainable replacement to the chemical fungicides. There are many PGPRs that perform very well in controlled conditions but not in field conditions, and hence the commercializing of hese products is not easy.  Development of formulations with increased shelf life, a broad spectrum of action and consistent performance under field conditions can pave the way for commercializing the PGPRs at a faster rate. Journal of Bangladesh Academy of Sciences, Vol. 44, No. 2, 69-84, 2020


1999 ◽  
Vol 124 (5) ◽  
pp. 462-467 ◽  
Author(s):  
Craig S. Charron ◽  
Carl E. Sams

The U.S. Clean Air Act bans the use of methyl bromide after 2005. Consequently, the development of alternative methods for control of soilborne pathogens is imperative. One alternative is to exploit the pesticidal properties of Brassica L. species. Macerated leaves (10 g) from `Premium Crop' broccoli [B. oleracea L. (Botrytis Group)], `Charmant' cabbage [B. oleracea L. (Capitata Group)], `Michihili Jade Pagoda' Chinese cabbage [B. rapa L. (Pekinensis Group)], `Blue Scotch Curled' kale [B. oleracea L. (Acephala Group)], Indian mustard [B. juncea (L.) Czerniak, unknown cultivar] or `Florida Broadleaf' mustard [B. juncea (L.) Czerniak] were placed in 500-mL glass jars. Petri dishes with either Pythium ultimum Trow or Rhizoctonia solani Kühn plugs on potato-dextrose agar were placed over the jar mouths. Radial growth of both fungi was suppressed most by Indian mustard. Volatiles were collected by solid-phase microextraction (SPME) and analyzed by gas chromatography-mass spectrometry. Allyl isothiocyanate (AITC) comprised >90% of the volatiles measured from `Florida Broadleaf' mustard and Indian mustard whereas (Z)-3-hexenyl acetate was the predominant compound emitted by the other species. Isothiocyanates were not detected by SPME from `Premium Crop' broccoli and `Blue Scotch Curled' kale although glucosinolates were found in freeze-dried leaves of all species. When exposed to AITC standard, P. ultimum growth was partially suppressed by 1.1 μmol·L-1 (μmol AITC/headspace volume) and completely suppressed by 2.2 μmol·L-1 R. solani was partially suppressed by 1.1, 2.2, and 3.3 μmol·L-1 AITC. Use of Brassica species for control of fungal pathogens is promising; the presence of AITC in both lines of B. juncea suppressed P. ultimum and R. solani but some Brassicas were inhibitory even when isothiocyanates were not detected.


2016 ◽  
Author(s):  
Nigel V Gale ◽  
Tara E Sackett ◽  
Sean C Thomas

Recent meta-analyses of plant responses to biochar boast positive average effects of between 10 and 40 %. Plant responses, however, vary greatly across systems, and null or negative biochar effects are increasingly reported. The mechanisms responsible for such responses remain unclear. In a glasshouse experiment we tested the effects of three forestry residue wood biochars, applied at five dosages (0, 5, 10, 20, 50 t/ha) to a temperate forest drystic cambisol as direct surface applications and as complete soil mixes on the herbaceous pioneers Lolium multiflorum and Trifolium repens. Null and negative effects of biochar on growth were found in most cases. One potential cause for null and negative plant responses to biochar is plant exposure to mobile compounds produced during pyrolysis that leach or evolve following additions of biochars to soil. In a second glasshouse experiment we examined the effects of simple leaching and heating techniques to ameliorate potentially phytotoxic effects of volatile and leachable compounds released from biochar. We used Solid Phase Microextraction (SPME) – gas chromatography – mass spectrometry (GC-MS) to qualitatively describe organic compounds in both biochar (through headspace extraction), and in the water leachates (through direct injection). Convection heating and water leaching of biochar prior to application alleviated growth inhibition. Additionally, growth was inhibited when filtrate from water-leached biochar was applied following germination. SPME-GC-MS detected primarily short-chained carboxylic acids and phenolics in both the leachates and solid chars, with relatively high concentrations of several known phytotoxic compounds including acetic acid, butyric acid, bisphenol and benzonoic acid. We speculate that variable plant responses to phytotoxic organic compounds leached from biochars may largely explain negative plant growth responses and also account for strongly species-specific patterns plant responses to biochar amendments in short-term experiments.


2011 ◽  
Vol 74 (4) ◽  
pp. 651-657 ◽  
Author(s):  
E. J. YANG ◽  
Y.-S. KIM ◽  
H. C. CHANG

The aim of this study was to purify and identify an antifungal compound from Lactobacillus plantarum AF1, which was isolated from kimchi. The antifungal compound was purified by solid-phase extraction and recycling preparative high-performance liquid chromatography, and its structure was elucidated by using gas chromatography–mass spectrometry (GC-MS). The active compound from L. plantarum AF1 was confirmed to be δ-dodecalactone (molecular weight, 198.3) by comparison of its gas chromatographic retention time with the mass spectrum of standard δ-dodecalactone. The MICs of δ-dodecalactone against various fungi and bacteria ranged from 350 to 6,250 μg/ml. δ-Dodecalactone showed strong antifungal activity against molds Aspergillus flavus, A. fumigatus, A. petrakii, A. ochraceus, A. nidulans, and Penicillium roqueforti. The three tested yeast strains of Candida albicans were more resistant than the molds. Antibacterial activity was evident but less potent than the antifungal activity. δ-Dodecalactone produced pleasurable (fruity) organoleptic characteristics. The results indicate the potential of the δ-dodecalactone produced by L. plantarum AF1 as a biopreservative and flavoring compound, as well as a biosafe remedy for candidiasis.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2385 ◽  
Author(s):  
Nigel V. Gale ◽  
Tara E. Sackett ◽  
Sean C. Thomas

Recent meta-analyses of plant responses to biochar boast positive average effects of between 10 and 40%. Plant responses, however, vary greatly across systems, and null or negative biochar effects are increasingly reported. The mechanisms responsible for such responses remain unclear. In a glasshouse experiment we tested the effects of three forestry residue wood biochars, applied at five dosages (0, 5, 10, 20, and 50 t/ha) to a temperate forest drystic cambisol as direct surface applications and as complete soil mixes on the herbaceous pioneersLolium multiflorumandTrifolium repens. Null and negative effects of biochar on growth were found in most cases. One potential cause for null and negative plant responses to biochar is plant exposure to mobile compounds produced during pyrolysis that leach or evolve following additions of biochars to soil. In a second glasshouse experiment we examined the effects of simple leaching and heating techniques to ameliorate potentially phytotoxic effects of volatile and leachable compounds released from biochar. We used Solid Phase Microextraction (SPME)–gas chromatography–mass spectrometry (GC-MS) to qualitatively describe organic compounds in both biochar (through headspace extraction), and in the water leachates (through direct injection). Convection heating and water leaching of biochar prior to application alleviated growth inhibition. Additionally, growth was inhibited when filtrate from water-leached biochar was applied following germination. SPME-GC-MS detected primarily short-chained carboxylic acids and phenolics in both the leachates and solid chars, with relatively high concentrations of several known phytotoxic compounds including acetic acid, butyric acid, 2,4-di-tert-butylphenol and benzoic acid. We speculate that variable plant responses to phytotoxic organic compounds leached from biochars may largely explain negative plant growth responses and also account for strongly species-specific patterns of plant responses to biochar amendments in short-term experiments.


2018 ◽  
Vol 19 (12) ◽  
pp. 3795 ◽  
Author(s):  
Xiang Lu ◽  
Shao-Fang Liu ◽  
Liang Yue ◽  
Xia Zhao ◽  
Yu-Bao Zhang ◽  
...  

Bacillus amyloliquefaciens FZB42 is a plant growth-promoting rhizobacteria that stimulates plant growth, and enhances resistance to pathogens and tolerance of salt stress. Instead, the mechanistic basis of drought tolerance in Arabidopsis thaliana induced by FZB42 remains unexplored. Here, we constructed an exopolysaccharide-deficient mutant epsC and determined the role of epsC in FZB42-induced drought tolerance in A. thaliana. Results showed that FZB42 significantly enhanced growth and drought tolerance of Arabidopsis by increasing the survival rate, fresh and dry shoot weights, primary root length, root dry weight, lateral root number, and total lateral root length. Coordinated changes were also observed in cellular defense responses, including elevated concentrations of proline and activities of superoxide dismutase and peroxidase, decreased concentrations of malondialdehyde, and accumulation of hydrogen peroxide in plants treated with FZB42. The relative expression levels of drought defense-related marker genes, such as RD29A, RD17, ERD1, and LEA14, were also increased in the leaves of FZB42-treated plants. In addition, FZB42 induced the drought tolerance in Arabidopsis by the action of both ethylene and jasmonate, but not abscisic acid. However, plants inoculated with mutant strain epsC were less able to resist drought stress with respect to each of these parameters, indicating that epsC are required for the full benefit of FZB42 inoculation to be gained. Moreover, the mutant strain was less capable of supporting the formation of a biofilm and of colonizing the A. thaliana root. Therefore, epsC is an important factor that allows FZB42 to colonize the roots and induce systemic drought tolerance in Arabidopsis.


Sign in / Sign up

Export Citation Format

Share Document