scholarly journals Inhibition of Pythium ultimum and Rhizoctonia solani by Shredded Leaves of Brassica Species

1999 ◽  
Vol 124 (5) ◽  
pp. 462-467 ◽  
Author(s):  
Craig S. Charron ◽  
Carl E. Sams

The U.S. Clean Air Act bans the use of methyl bromide after 2005. Consequently, the development of alternative methods for control of soilborne pathogens is imperative. One alternative is to exploit the pesticidal properties of Brassica L. species. Macerated leaves (10 g) from `Premium Crop' broccoli [B. oleracea L. (Botrytis Group)], `Charmant' cabbage [B. oleracea L. (Capitata Group)], `Michihili Jade Pagoda' Chinese cabbage [B. rapa L. (Pekinensis Group)], `Blue Scotch Curled' kale [B. oleracea L. (Acephala Group)], Indian mustard [B. juncea (L.) Czerniak, unknown cultivar] or `Florida Broadleaf' mustard [B. juncea (L.) Czerniak] were placed in 500-mL glass jars. Petri dishes with either Pythium ultimum Trow or Rhizoctonia solani Kühn plugs on potato-dextrose agar were placed over the jar mouths. Radial growth of both fungi was suppressed most by Indian mustard. Volatiles were collected by solid-phase microextraction (SPME) and analyzed by gas chromatography-mass spectrometry. Allyl isothiocyanate (AITC) comprised >90% of the volatiles measured from `Florida Broadleaf' mustard and Indian mustard whereas (Z)-3-hexenyl acetate was the predominant compound emitted by the other species. Isothiocyanates were not detected by SPME from `Premium Crop' broccoli and `Blue Scotch Curled' kale although glucosinolates were found in freeze-dried leaves of all species. When exposed to AITC standard, P. ultimum growth was partially suppressed by 1.1 μmol·L-1 (μmol AITC/headspace volume) and completely suppressed by 2.2 μmol·L-1 R. solani was partially suppressed by 1.1, 2.2, and 3.3 μmol·L-1 AITC. Use of Brassica species for control of fungal pathogens is promising; the presence of AITC in both lines of B. juncea suppressed P. ultimum and R. solani but some Brassicas were inhibitory even when isothiocyanates were not detected.

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 476e-476
Author(s):  
Craig S. Charron ◽  
Catherine O. Chardonnet ◽  
Carl E. Sams

The U.S. Clean Air Act bans the use of methyl bromide after 2001. Consequently, the development of alternative methods for control of soilborne pathogens is imperative. One alternative is to exploit the pesticidal properties of macerated tissues of Brassica spp. This study tested the potential of several Brassica spp. for control of fungal pathogens. Pythium ultimum Trow or Rhizoctonia solani Kühn plugs on potato-dextrose agar on petri dishes were sealed in 500-ml glass jars (at 22 °C) containing macerated leaves (10 g) from one of six Brassica spp. Radial growth was measured 24, 48, and 72 h after inoculation. Indian mustard (B. juncea) was the most suppressive, followed by `Florida Broadleaf' mustard (B. juncea). Volatile compounds in the jars were sampled with a solid-phase microextraction device (SPME) and identified by gas chromatography-mass spectrometry (GC-MS). Allyl isothiocyanate (AITC) comprised over 90% of the total volatiles measured from Indian mustard and `Florida Broadleaf' mustard. Isothiocyanates were detected in jars with all plants except broccoli. (Z)-3-hexenyl acetate was emitted by all plants and was the predominant volatile of `Premium Crop' broccoli (B. oleracea L. var. italica), `Michihili Jade Pagoda' Chinese cabbage (B. pekinensis), `Charmant' cabbage (B. oleracea L. var. capitata), and `Blue Scotch Curled' kale (B. oleracea L. var. viridis). To assess the influence of AITC on radial growth of P. ultimum and R. solani, AITC was added to jars to give headspace concentrations of 0.10, 0.20, and 0.30 mg·L–1 (mass of AITC per volume of headspace). Growth of both fungi was inhibited by 0.10 mg·L–1 AITC. 0.20 mg·L–1 AITC was fungicidal to P. ultimum although the highest AITC level tested (0.30 mg·L–1) did not terminate R. solani growth. These results indicate that residues from some Brassica spp. may be a viable part of a soilborne pest control strategy.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 554F-555 ◽  
Author(s):  
Ryan R.P. Noble ◽  
C.S. Charron ◽  
C.E. Sams

The development of alternative methods for control of soilborne pathogens is imperative since the U.S. Clean Air Act bans the use of methyl bromide after 2005. One possibility is to exploit the pesticidal properties of compounds released by macerated Brassica tissues. In this study, masked chaffer beetle larvae were placed in sealed 473-mL jars with 335 g of soil amended with 1%, 2%, 4%, or 8% (g·g–1) Brassica tissue. The most prevalent volatile toxic compound of Brassica juncea (PI 458934) is allyl isothiocyanate (AITC). AITC production was measured in the jars at 0.25, 4, 8, 24, and 48 h using a solid-phase microextraction device (SPME) and gas chromatography. After 7 days, larvae mortality was determined. Control treatments included untreated soil, soil amended with 8% tomato plant tissue, soil amended with pure AITC, and untreated soil with an atmosphere of ≈20% O2 and 0% CO2 changing over 48 h to 2% O2 and 20% CO2. AITC levels were positively correlated to larvae mortality. The estimated lethal concentration for 50% kill (LC50) was 3.6 μg AITC/L soil atmosphere. AITC levels may be influenced by Brassica mass added, soil bulk density, and environmental factors including temperature and moisture. B. juncea has a high tissue AITC concentration. However, the mass of Brassica tissue required for insecticidal application against Cyclocephala sp. is also high, between 4% and 8% of soil mass. Development and selection of Brassica species that produce higher concentrations of isothiocyanate would increase the effectiveness of Brassica biofumigation as an alternative to methyl bromide for controlling soilborne insects.


2004 ◽  
Vol 380 (2) ◽  
pp. 541-548 ◽  
Author(s):  
Hai-Shu LIN ◽  
Andrew M. JENNER ◽  
Choon Nam ONG ◽  
Shan Hong HUANG ◽  
Matthew WHITEMAN ◽  
...  

8-Hydroxy-2´-deoxyguanosine (8OHdG) is a widely used biomarker for the measurement of endogenous oxidative DNA damage. A sensitive method for the quantification of 8OHdG in urine by single solid-phase extraction and GC-MS (gas chromatography with MS detection) using selective ion monitoring is described in the present study. After solid-phase extraction, samples are freeze-dried, derivatized by trimethylsilylation and analysed by GC-MS. The urinary 8OHdG was quantified using heavy isotope dilution with [18O]8OHdG. The recovery of 8OHdG after the solid-phase extraction ranged from 70 to 80% for a wide range of urinary 8OHdG levels. Using 1 ml of urine, the limit of quantification was >2.5 nM (2.5 pmol/ml) and the calibration curve was linear in the range 2.5–200 nM. This method was applied to measure 8OHdG in urine samples from 12 healthy subjects. The intra- and inter-day variations were <9%. Urinary 8OHdG levels in spot urine samples from four healthy subjects were also measured for 1 week and, again, the variation was small. The presence of H2O2 in urine did not cause artifactual formation of 8OHdG. Since this assay is simple, rapid, sensitive and reproducible, it seems suitable to be used as a routine methodology for the measurement of urinary excretion of 8OHdG in large population studies.


2016 ◽  
Vol 12 (1) ◽  
pp. 75-81 ◽  
Author(s):  
Kandhasamy Sowndhararajan ◽  
Nyuk Ling Chin ◽  
Yus Aniza Yusof ◽  
Lee Ling Lai ◽  
Wan Aida Wan Mustapha

Abstract The color and aroma properties of Pandanus amaryllifolius Roxb. leaves (pandan) were studied by mechanical extraction using normal and turbo blade blenders under different blending times (60–180 s). The extracted juice was freeze-dried into powders and its aroma components were measured in a solid-phase microextraction using gas chromatography/mass spectrometry (SPME-GC/MS) analysis. The turbo blade blender provided maximum color pigment of greenness and yellowness at blending time of 90 s as compared to the normal blender that required 180 s. In GC-MS analysis, the major component, 2-acetyl-1-pyrroline, was found to be one time higher in the freeze-dried pandan juice samples obtained from turbo blade blender than normal blender. Other components including the cis-3-hexanal, 2-methylene-4-pentenenitrile and 1,2,4-trimethylbenzene were also detected in the samples. In conclusion, the turbo blade blender is more effective than normal laboratory blender in terms of color extraction, particle size reduction and the aroma retention.


Food Research ◽  
2021 ◽  
Vol 5 (S2) ◽  
pp. 98-106
Author(s):  
S. Darniadi ◽  
D.D. Handoko ◽  
S. Sunarmani ◽  
S. Widowati

Durian is a unique tropical fruit that has a strong smell and distinctive taste. It is a seasonal fruit and has a few days shelf-life. Freeze drying is known for preserving foods while maintaining its original shape and provide excellent rehydrated products. This study aimed to determine the shelf-life of freeze-dried (FD) durian products using the accelerated shelf-life testing (ASLT) method and to assess the flavour changes in fresh and freeze-dried durian products. The parameters used to determine shelf-life were moisture content and L* a* b* colour values of FD durian products for 28 days of storage at 30, 40, and 50oC. Flavour analysis using Solid Phase Microextraction (SPME) and Gas Chromatography-Mass Spectrometry (GCMS) was carried out on fresh durian pulp, FD durian for 30 hrs, and FD durian for 36 hrs. The estimation of shelf-life of FD durian products at storage temperatures of 25 and 30oC, respectively, were based on the following parameters: (1) moisture content: 41 and 37 days, (2) L*(brightness): 467 and 311 days, (3) a* (redness): 144 and 171 days, and (4) b*(yellowness): 43 and 46 days. A total of twenty-four volatile compounds contributed to the flavour of fresh durian fruit and five of them had concentrations of more than 10 ppm. The losses percentage of these five volatile compounds were in a range of 78-95% (FD durian for 30 hrs) and a range of 0- 100% (FD durian for 36 hrs). Freeze-drying technique on durian was able to extend shelflife and preserve flavour compounds.


2020 ◽  
Vol 6 (4) ◽  
pp. 341
Author(s):  
Nongnat Phoka ◽  
Nakarin Suwannarach ◽  
Saisamorn Lumyong ◽  
Shin-ichi Ito ◽  
Kenji Matsui ◽  
...  

Fungal volatile organic compounds (VOCs) emitted by Trichoderma species interact with a plant host and display multifaceted mechanisms. In this study, we investigated the antifungal activity of VOCs emitted by Trichoderma asperelloides PSU-P1 against fungal pathogens, as well as the ability of VOCs to activate defense responses and to promote plant growth in Arabidopsis thaliana. The strain’s VOCs had remarkable antifungal activity against fungal pathogens, with an inhibition range of 15.92–84.95% in a volatile antifungal bioassay. The VOCs of T. asperelloides PSU-P1 promoted the plant growth of A. thaliana, thereby increasing the fresh weight, root length, and chlorophyll content in the VOC-treated A. thaliana relative to those of the control. High expression levels of the chitinase (CHI) and β-1,3-glucanase (GLU) genes were found in the VOC-treated A. thaliana by quantitative reverse transcription polymerase chain reaction (RT-PCR). The VOC-treated A. thaliana had higher defense-related enzyme (peroxidase (POD)) and cell wall-degrading enzyme (chitinase and β-1,3-glucanase) activity than in the control. The headspace VOCs produced by PSU-P1, trapped with solid phase microextraction, and tentatively identified by gas chromatography–mass spectrometry, included 2-methyl-1-butanol, 2-pentylfuran, acetic acid, and 6-pentyl-2H-pyran-2-one (6-PP). The results suggest that T. asperelloides PSU-P1 emits VOCs responsible for antifungal activity, for promoting plant growth, and for inducing defense responses in A. thaliana.


2006 ◽  
Vol 72 (9) ◽  
pp. 6124-6135 ◽  
Author(s):  
Y. Kourkoutas ◽  
P. Kandylis ◽  
P. Panas ◽  
J. S. G. Dooley ◽  
P. Nigam ◽  
...  

ABSTRACT The use of freeze-dried kefir coculture as a starter in the production of feta-type cheese was investigated. Maturation of the produced cheese at 4�C was monitored for up to 70 days, and the effects of the starter culture, the salting method, and the ripening process on quality characteristics were studied. The use of kefir coculture as a starter led to increased lactic acid concentrations and decreased pH values in the final product associated with significantly higher conversion rates compared to salted rennet cheese. Determination of bacterial diversity at the end of the ripening process in salted kefir and rennet cheeses by denaturing gradient gel electrophoresis technology, based on both DNA and RNA analyses, suggested a potential species-specific inhibition of members of the genera Staphylococcus and Psychrobacter by kefir coculture. The main active microbial associations in salted kefir cheese appeared to be members of the genera Pseudomonas and Lactococcus, while in salted rennet cheese, Oxalobacteraceae, Janthinobacterium, Psychrobacter, and Pseudomonas species were noted. The effect of the starter culture on the production of aroma-related compounds responsible for cheese flavor was also studied by the solid-phase microextraction-gas chromatography-mass spectrometry technique. Kefir coculture also appeared to extend the shelf life of unsalted cheese. Spoilage of kefir cheese was observed on the 9th and 20th days of preservation at 10 and 5�C, respectively, while spoilage in the corresponding rennet cheese was detected on the 7th and 16th days. Microbial counts during preservation of both types of unsalted cheese increased steadily and reached similar levels, with the exception of staphylococci, which were significantly lower in unsalted kefir cheese. All types of cheese produced with kefir as a starter were approved and accepted by the panel during the preliminary sensory evaluation compared to commercial feta-type cheese.


2021 ◽  
Vol 7 (3) ◽  
pp. 187
Author(s):  
On-Uma Ruangwong ◽  
Prisana Wonglom ◽  
Nakarin Suwannarach ◽  
Jaturong Kumla ◽  
Narit Thaochan ◽  
...  

Soil microorganisms are well studied for their beneficial effects on plant growth and their impact on biocontrol agents. The production of volatile antifungal compounds emitted from soil fungi is considered to be an effective ability that can be applied in biofumigants in the control of plant diseases. A soil fungus, Trichoderma asperelloides TSU1, was isolated from flamingo flower cultivated soil and identified on the basis of the morphology and molecular analysis of the internal transcribed spacer (ITS), rpb2, and tef1-α genes. To test T. asperelloides TSU1-produced volatile organic compounds (VOCs) with antifungal activity, the sealed plate method was used. The VOCs of T. asperelloides TSU1 inhibited the mycelial growth of fungal pathogens that were recently reported as emerging diseases in Thailand, namely, Corynespora cassiicola, Fusarium incarnatum, Neopestalotiopsis clavispora, N. cubana, and Sclerotium rolfsii, with a percentage inhibition range of 38.88–68.33%. Solid-phase microextraction (SPME) was applied to trap VOCs from T. asperelloides TSU1 and tentatively identify them through gas chromatography–mass spectrometry (GC/MS). A total of 17 compounds were detected in the VOCs of T. asperelloides TSU1, and the dominant compounds were identified as fluoro(trinitro)methane (18.192% peak area) and 2-phenylethanol (9.803% peak area). Interestingly, the commercial 2-phenyethanol showed antifungal activity against fungal pathogens that were similar to the VOCs of T. asperelloides TSU1 by bioassay. On the basis of our study’s results, T. asperelloides TSU1 isolated from soil displayed antifungal abilities via the production of VOCs responsible for restricting pathogen growth.


2020 ◽  
Vol 9 (4) ◽  
pp. 30
Author(s):  
Fadwa Al-Taher ◽  
Boris Nemzer

The objective of this study was to determine a method for the identification of aroma volatile compounds in freeze-dried (FD) strawberries and raspberries for quality purposes. The aroma profile was examined using headspace solid-phase micro-extraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). FD strawberries and raspberries were extracted at four different times (10,15, 20 and 30 min) and three different temperatures (40 &deg;C, 60 &deg;C and 80 &deg;C) using a SPME fiber coated with 50/30 &micro;m divinylbenzene/carboxen on polydimethylsiloxane (DVB/CAR-PDMS) to determine optimum recoveries for aroma volatile compounds. The DVB/CAR-PDMS SPME fiber showed the best extraction of aroma volatile compounds from strawberry and raspberry at 60&deg;C for 15 min. Twenty-nine volatile compounds were identified from the strawberry samples and 20 from the raspberry samples, including terpenes, aldehydes, esters, acids and alcohols. Select aroma compounds in FD strawberries and raspberries were quantitated using SPME and GC-MS. It is important to determine the desirable aroma active compounds in freeze-dried strawberries and raspberries for quality uses since they are becoming popular commercially.


Foods ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 77 ◽  
Author(s):  
Stavros Plessas ◽  
Ioanna Mantzourani ◽  
Argyro Bekatorou

In the present study, a novel Pediococcus pentosaceus SP2 strain, recently isolated from kefir grains, was evaluated as a starter culture in sourdough bread making. The novel starter was applied in fresh, freeze-dried, and freeze-dried immobilized (on wheat bran) form. The type of culture (fresh, freeze-dried, immobilized cells) influenced the bread characteristics. Specifically, the application of freeze-dried immobilized cells led to higher total titratable acidity (TTA) values (9.81 mL NaOH N/10), and the produced bread presented higher resistance to mold and rope spoilage. Moreover, the produced sourdough breads were significantly better in terms of pH, TTA, organic acids content, and resistance to mold and rope spoilage, compared to breads made with a commercial, wild microbiota, sourdough. The organic acids content was also significantly higher than the commercial sourdough sample (2.93 g/kg lactic acid; 1.01 g/kg acetic acid). Determination of volatile compounds through solid-phase microextraction (SPME) gas chromatography/mass spectrometry (GC/MS) analysis and sensorial assessments indicated no significant differences between the tested sourdough breads.


Sign in / Sign up

Export Citation Format

Share Document