scholarly journals Host-Induced Gene Silencing of a G Protein α Subunit Gene CsGpa1 Involved in Pathogen Appressoria Formation and Virulence Improves Tobacco Resistance to Ciboria shiraiana

2021 ◽  
Vol 7 (12) ◽  
pp. 1053
Author(s):  
Panpan Zhu ◽  
Shuai Zhang ◽  
Ruolan Li ◽  
Changying Liu ◽  
Wei Fan ◽  
...  

Hypertrophy sorosis scleroteniosis caused by Ciboria shiraiana is the most devastating disease of mulberry fruit. However, few mulberry lines show any resistance to C. shiraiana. An increasing amount of research has shown that host-induced gene silencing (HIGS) is an effective strategy for enhancing plant tolerance to pathogens by silencing genes required for their pathogenicity. In this study, two G protein α subunit genes, CsGPA1 and CsGPA2, were identified from C. shiraiana. Silencing CsGPA1 and CsGPA2 had no effect on hyphal growth but reduced the number of sclerotia and increased the single sclerotium weight. Moreover, silencing CsGpa1 resulted in increased fungal resistance to osmotic and oxidative stresses. Compared with wild-type and empty vector strains, the number of appressoria was clearly lower in CsGPA1-silenced strains. Importantly, infection assays revealed that the virulence of CsGPA1-silenced strains was significantly reduced, which was accompanied by formation of fewer appressoria and decreased expression of several cAMP/PKA- or mitogen-activated protein-kinase-related genes. Additionally, transgenic Nicotiana benthamiana expressing double-stranded RNA targeted to CsGpa1 through the HIGS method significantly improved resistance to C. shiraiana. Our results indicate that CsGpa1 is an important regulator in appressoria formation and the pathogenicity of C. shiraiana. CsGpa1 is an efficient target to improve tolerance to C. shiraiana using HIGS technology.

2008 ◽  
Vol 7 (12) ◽  
pp. 2133-2140 ◽  
Author(s):  
Chenlei Hua ◽  
Yonglin Wang ◽  
Xiaobo Zheng ◽  
Daolong Dou ◽  
Zhengguang Zhang ◽  
...  

ABSTRACT For the soybean pathogen Phytophthora sojae, chemotaxis of zoospores to isoflavones is believed to be critical for recognition of the host and for initiating infection. However, the molecular mechanisms underlying this chemotaxis are largely unknown. To investigate the role of G-protein and calcium signaling in chemotaxis, we analyzed the expression of several genes known to be involved in these pathways and selected one that was specifically expressed in sporangia and zoospores but not in mycelium. This gene, named PsGPA1, is a single-copy gene in P. sojae and encodes a G-protein α subunit that shares 96% identity in amino acid sequence with that of Phytophthora infestans. To elucidate the function, expression of PsGPA1 was silenced by introducing antisense constructs into P. sojae. PsGPA1 silencing did not disturb hyphal growth or sporulation but severely affected zoospore behavior, including chemotaxis to the soybean isoflavone daidzein. Zoospore encystment and cyst germination were also altered, resulting in the inability of the PsGPA1-silenced mutants to infect soybean. In addition, the expressions of a calmodulin gene, PsCAM1, and two calcium- and calmodulin-dependent protein kinase genes, PsCMK3 and PsCMK4, were increased in the mutant zoospores, suggesting that PsGPA1 negatively regulates the calcium signaling pathways that are likely involved in zoospore chemotaxis.


2002 ◽  
Vol 1 (6) ◽  
pp. 865-874 ◽  
Author(s):  
Cristina Sánchez-Martínez ◽  
José Pérez-Martín

ABSTRACT Candida albicans is able to respond to environmental changes by inducing a distinct morphological program, which is related to the ability to infect mammalian hosts. Although some of the signal transduction pathways involved in this response are known, it is not clear how the environmental signals are sensed and transmitted to these transduction cascades. In this work, we have studied the function of GPA2, a new gene from C. albicans, which encodes a G-protein α-subunit homologue. We demonstrate that Gpa2 plays an important role in the yeast-hypha dimorphic transition in the response of C. albicans to some environmental inducers. Deletion of both alleles of the GPA2 gene causes in vitro defects in morphological transitions in Spider medium and SLAD medium and in embedded conditions but not in medium containing serum. These defects cannot be reversed by exogenous addition of cyclic AMP. However, overexpression of HST7, which encodes a component of the filament-inducing mitogen-activated protein kinase (MAPK) cascade, bypasses the Gpa2 requirement. We have obtained different gain-of-function and loss-of-function mutant alleles of the GPA2 gene, which we have introduced in several C. albicans genetic backgrounds. Our results indicate that, in response to environmental cues, Gpa2 is required for the regulation of a MAPK signaling pathway.


Genetics ◽  
2003 ◽  
Vol 164 (2) ◽  
pp. 487-499 ◽  
Author(s):  
Sophie Zuber ◽  
Michael J Hynes ◽  
Alex Andrianopoulos

AbstractThe opportunistic human pathogen Penicillium marneffei exhibits a temperature-dependent dimorphic switch. At 25°, multinucleate, septate hyphae that can undergo differentiation to produce asexual spores (conidia) are produced. At 37° hyphae undergo arthroconidiation to produce uninucleate yeast cells that divide by fission. This work describes the cloning of the P. marneffei gasC gene encoding a G-protein α-subunit that shows high homology to members of the class III fungal Gα-subunits. Characterization of a ΔgasC mutant and strains carrying a dominant-activating gasCG45R or a dominant-interfering gasCG207R allele show that GasC is a crucial regulator of germination. A ΔgasC mutant is severely delayed in germination, whereas strains carrying a dominant-activating gasCG45R allele show a significantly accelerated germination rate. Additionally, GasC signaling positively affects the production of the red pigment by P. marneffei at 25° and negatively affects the onset of conidiation and the conidial yield, showing that GasC function overlaps with functions of the previously described Gα-subunit GasA. In contrast to the S. cerevisiae ortholog Gpa2, our data indicate that GasC is not involved in carbon or nitrogen source sensing and plays no major role in either hyphal or yeast growth or in the switch between these two forms.


1991 ◽  
Vol 1094 (2) ◽  
pp. 193-199 ◽  
Author(s):  
Jermelina Linor R. Garibay ◽  
Tohru Kozasa ◽  
Hiroshi Itoh ◽  
Toshihiko Tsukamoto ◽  
Masaaki Matsuoka ◽  
...  

2017 ◽  
Vol 114 (45) ◽  
pp. E9559-E9568 ◽  
Author(s):  
Qing He ◽  
Richard Bouley ◽  
Zun Liu ◽  
Marc N. Wein ◽  
Yan Zhu ◽  
...  

Alterations in the activity/levels of the extralarge G protein α-subunit (XLαs) are implicated in various human disorders, such as perinatal growth retardation. Encoded by GNAS, XLαs is partly identical to the α-subunit of the stimulatory G protein (Gsα), but the cellular actions of XLαs remain poorly defined. Following an initial proteomic screen, we identified sorting nexin-9 (SNX9) and dynamins, key components of clathrin-mediated endocytosis, as binding partners of XLαs. Overexpression of XLαs in HEK293 cells inhibited internalization of transferrin, a process that depends on clathrin-mediated endocytosis, while its ablation by CRISPR/Cas9 in an osteocyte-like cell line (Ocy454) enhanced it. Similarly, primary cardiomyocytes derived from XLαs knockout (XLKO) pups showed enhanced transferrin internalization. Early postnatal XLKO mice showed a significantly higher degree of cardiac iron uptake than wild-type littermates following iron dextran injection. In XLKO neonates, iron and ferritin levels were elevated in heart and skeletal muscle, where XLαs is normally expressed abundantly. XLKO heart and skeletal muscle, as well as XLKO Ocy454 cells, showed elevated SNX9 protein levels, and siRNA-mediated knockdown of SNX9 in XLKO Ocy454 cells prevented enhanced transferrin internalization. In transfected cells, XLαs also inhibited internalization of the parathyroid hormone and type 2 vasopressin receptors. Internalization of transferrin and these G protein-coupled receptors was also inhibited in cells expressing an XLαs mutant missing the Gα portion, but not Gsα or an N-terminally truncated XLαs mutant unable to interact with SNX9 or dynamin. Thus, XLαs restricts clathrin-mediated endocytosis and plays a critical role in iron/transferrin uptake in vivo.


Yeast ◽  
1996 ◽  
Vol 12 (11) ◽  
pp. 1125-1133 ◽  
Author(s):  
Alma L. Saviñón-Tejeda ◽  
Laura Ongay-Larios ◽  
Jorge RamíRez ◽  
Roberto Coria

2019 ◽  
Vol 294 (15) ◽  
pp. 5747-5758 ◽  
Author(s):  
Davide Malfacini ◽  
Julian Patt ◽  
Suvi Annala ◽  
Kasper Harpsøe ◽  
Funda Eryilmaz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document