scholarly journals Genome-Wide Identification of bZIP Transcription Factor Genes and Functional Analyses of Two Members in Cytospora chrysosperma

2021 ◽  
Vol 8 (1) ◽  
pp. 34
Author(s):  
Dasen Wen ◽  
Lu Yu ◽  
Dianguang Xiong ◽  
Chengming Tian

The basic leucine zipper (bZIP) transcription factor (TF) family, one of the largest and the most diverse TF families, is widely distributed across the eukaryotes. It has been described that the bZIP TFs play diverse roles in development, nutrient utilization, and various stress responses in fungi. However, little is known of the bZIP members in Cytospora chrysosperma, a notorious plant pathogenic fungus, which causes canker disease on over 80 woody plant species. In this study, 26 bZIP genes were systematically identified in the genome of C. chrysosperma, and two of them (named CcbZIP05 and CcbZIP23) significantly down-regulated in CcPmk1 deletion mutant (a pathogenicity-related mitogen-activated protein kinase) were selected for further analysis. Deletion of CcbZIP05 or CcbZIP23 displayed a dramatic reduction in fungal growth but showed increased hypha branching and resistance to cell wall inhibitors and abiotic stresses. The CcbZIP05 deletion mutants but not CcbZIP23 deletion mutants were more sensitive to the hydrogen peroxide compared to the wild-type and complemented strains. Additionally, the CcbZIP23 deletion mutants produced few pycnidia but more pigment. Remarkably, both CcbZIP05 and CcbZIP23 deletion mutants were significantly reduced in fungal virulence. Further analysis showed that CcbZIP05 and CcbZIP23 could regulate the expression of putative effector genes and chitin synthesis-related genes. Taken together, our results suggest that CcbZIP05 and CcbZIP23 play important roles in fungal growth, abiotic stresses response, and pathogenicity, which will provide comprehensive information on the CcbZIP genes and lay the foundation for further research on the bZIP members in C. chrysosperma.

2019 ◽  
Vol 20 (9) ◽  
pp. 2203 ◽  
Author(s):  
Feng Pan ◽  
Min Wu ◽  
Wenfang Hu ◽  
Rui Liu ◽  
Hanwei Yan ◽  
...  

The basic leucine zipper (bZIP) transcription factor (TF) family is one of the largest gene families, and play crucial roles in many processes, including stress responses, hormone effects. The TF family also participates in plant growth and development. However, limited information is available for these genes in moso bamboo (Phyllostachys edulis), one of the most important non-timber forest products in the world. In the present study, 154 putative PhebZIP genes were identified in the moso bamboo genome. The phylogenetic analyses indicate that the PhebZIP gene proteins classify into 9 subfamilies and the gene structures and conserved motifs that analyses identified among all PhebZIP proteins suggested a high group-specificity. Microsynteny and evolutionary patterns analyses of the non-synonymous (Ka) and synonymous (Ks) substitution rates and their ratios indicated that paralogous pairs of PhebZIP genes in moso bamboo underwent a large-scale genome duplication event that occurred 7–15 million years ago (MYA). According to promoter sequence analysis, we further selected 18 genes which contain the higher number of cis-regulatory elements for expression analysis. The result showed that these genes are extensively involved in GA-, ABA- and MeJA-responses, with possibly different mechanisms. The tissue-specific expression profiles of PhebZIP genes in five plant tissues/organs/developmental stages suggested that these genes are involved in moso bamboo organ development, especially seed development. Subcellular localization and transactivation activity analysis showed that PhebZIP47 and PhebZIP126 were localized in the nucleus and PhebZIP47 with no transcriptional activation in yeast. Our research provides a comprehensive understanding of PhebZIP genes and may aid in the selection of appropriate candidate genes for further cloning and functional analysis in moso bamboo growth and development, and improve their resistance to stress during their life.


2020 ◽  
Vol 295 (42) ◽  
pp. 14458-14472
Author(s):  
Emmanuelle V. LeBlanc ◽  
Elizabeth J. Polvi ◽  
Amanda O. Veri ◽  
Gilbert G. Privé ◽  
Leah E. Cowen

Fungi inhabit extraordinarily diverse ecological niches, including the human body. Invasive fungal infections have a devastating impact on human health worldwide, killing ∼1.5 million individuals annually. The majority of these deaths are attributable to species of Candida, Cryptococcus, and Aspergillus. Treating fungal infections is challenging, in part due to the emergence of resistance to our limited arsenal of antifungal agents, necessitating the development of novel therapeutic options. Whereas conventional antifungal strategies target proteins or cellular components essential for fungal growth, an attractive alternative strategy involves targeting proteins that regulate fungal virulence or antifungal drug resistance, such as regulators of fungal stress responses. Stress response networks enable fungi to adapt, grow, and cause disease in humans and include regulators that are highly conserved across eukaryotes as well as those that are fungal-specific. This review highlights recent developments in elucidating crystal structures of fungal stress response regulators and emphasizes how this knowledge can guide the design of fungal-selective inhibitors. We focus on the progress that has been made with highly conserved regulators, including the molecular chaperone Hsp90, the protein phosphatase calcineurin, and the small GTPase Ras1, as well as with divergent stress response regulators, including the cell wall kinase Yck2 and trehalose synthases. Exploring structures of these important fungal stress regulators will accelerate the design of selective antifungals that can be deployed to combat life-threatening fungal diseases.


2014 ◽  
Vol 13 (3) ◽  
pp. 427-436 ◽  
Author(s):  
Kyunghun Min ◽  
Hokyoung Son ◽  
Jae Yun Lim ◽  
Gyung Ja Choi ◽  
Jin-Cheol Kim ◽  
...  

ABSTRACT The survival of cellular organisms depends on the faithful replication and transmission of DNA. Regulatory factor X (RFX) transcription factors are well conserved in animals and fungi, but their functions are diverse, ranging from the DNA damage response to ciliary gene regulation. We investigated the role of the sole RFX transcription factor, RFX1, in the plant-pathogenic fungus Fusarium graminearum . Deletion of rfx1 resulted in multiple defects in hyphal growth, conidiation, virulence, and sexual development. Deletion mutants of rfx1 were more sensitive to various types of DNA damage than the wild-type strain. Septum formation was inhibited and micronuclei were produced in the rfx1 deletion mutants. The results of the neutral comet assay demonstrated that disruption of rfx1 function caused spontaneous DNA double-strand breaks (DSBs). The transcript levels of genes involved in DNA DSB repair were upregulated in the rfx1 deletion mutants. DNA DSBs produced micronuclei and delayed septum formation in F. graminearum . Green fluorescent protein (GFP)-tagged RFX1 localized in nuclei and exhibited high expression levels in growing hyphae and conidiophores, where nuclear division was actively occurring. RNA-sequencing-based transcriptomic analysis revealed that RFX1 suppressed the expression of many genes, including those required for the repair of DNA damage. Taken together, these findings indicate that the transcriptional repressor rfx1 performs crucial roles during normal cell growth by maintaining genome integrity.


2019 ◽  
Author(s):  
Roy Njoroge Kimotho ◽  
Elamin Hafiz Baillo ◽  
Zhengbin Zhang

Background: Maize (Zea mays L.) is a principal cereal crop cultivated worldwide for human food, animal feed, and more recently as a source of biofuel. However, as a direct consequence of water insufficiency and climate change, frequent occurrences of both biotic and abiotic stresses have been reported in different regions around the world, and recently, this has become a major threat in increasing global maize yields. Plants respond to abiotic stresses by utilizing the activity of transcription factors, which are families of genes coding for specific transcription factor proteins whose target genes form a regulon which is involved in the repression/ activation of genes associated with abiotic stress responses. Therefore, it is of uttermost importance to have a systematic study on each family of the transcription factors, the downstream target genes they regulate, and the specific transcription factor genes which are involved in multiple abiotic stress responses in maize and other main crops. Method: In this review, the main transcription factor families, the specific transcription factor genes and their regulons which are involved in abiotic stress regulation will be momentarily discussed. Great emphasis will be given on maize abiotic stress improvement throughout this review, although other examples from other plants like rice, Arabidopsis, wheat, and barley will be used. Results: We have described in detail the main transcription factor families in maize which take part in abiotic stress responses together with their regulons. Furthermore, we have also briefly described the utilization of high-efficiency technologies in the study and characterization of TFs involved in the abiotic stress regulatory networks in plants with an emphasis on increasing maize production. Examples of these technologies include next-generation sequencing, microarray analysis, machine learning and RNA-Seq technology. Conclusion: In conclusion, it is hoped that all the information provided in this review may in time contribute to the use of TF genes in the research, breeding, and development of new abiotic stress tolerant maize cultivars.


Author(s):  
Roy Njoroge Kimotho ◽  
Elamin Hafiz Baillo ◽  
Zhengbin Zhang

Background: Maize (Zea mays L.) is a principal cereal crop cultivated worldwide for human food, animal feed, and more recently as a source of biofuel. However, as a direct consequence of water insufficiency and climate change, frequent occurrences of both biotic and abiotic stresses have been reported in different regions around the world, and recently, this has become a major threat in increasing global maize yields. Plants respond to abiotic stresses by utilizing the activity of transcription factors, which are families of genes coding for specific transcription factor proteins whose target genes form a regulon which is involved in the repression/ activation of genes associated with abiotic stress responses. Therefore, it is of uttermost importance to have a systematic study on each family of the transcription factors, the downstream target genes they regulate, and the specific transcription factor genes which are involved in multiple abiotic stress responses in maize and other main crops. Method: In this review, the main transcription factor families, the specific transcription factor genes and their regulons which are involved in abiotic stress regulation will be momentarily discussed. Great emphasis will be given on maize abiotic stress improvement throughout this review, although other examples from other plants like rice, Arabidopsis, wheat, and barley will be used. Results: We have described in detail the main transcription factor families in maize which take part in abiotic stress responses together with their regulons. Furthermore, we have also briefly described the utilization of high-efficiency technologies in the study and characterization of TFs involved in the abiotic stress regulatory networks in plants with an emphasis on increasing maize production. Examples of these technologies include next-generation sequencing, microarray analysis, machine learning and RNA-Seq technology. Conclusion: In conclusion, it is hoped that all the information provided in this review may in time contribute to the use of TF genes in the research, breeding, and development of new abiotic stress tolerant maize cultivars.


2010 ◽  
Vol 23 (8) ◽  
pp. 1053-1068 ◽  
Author(s):  
Min Guo ◽  
Wang Guo ◽  
Yue Chen ◽  
Suomeng Dong ◽  
Xing Zhang ◽  
...  

Magnaporthe oryzae is the causal agent of rice blast disease, leading to enormous losses of rice production. Here, we characterized a basic leucine zipper (bZIP) transcription factor, Moatf1, in M. oryzae, a homolog of Schizosaccharomyces pombe ATF/CREB that regulates the oxidative stress response. Moatf1 deletion caused retarded vegetative growth of mycelia, and the Moatf1 mutant exhibited higher sensitivity to hydrogen peroxide (H2O2) than did the wild-type strain. The mutant showed severely reduced activity of extracellular enzymes and transcription level of laccases and peroxidases and exhibited significantly reduced virulence on rice cultivar CO-39. On rice leaf sheath, most of the infectious hyphae of the mutant became swollen and displayed restricted growth in primary infected cells. Defense response was strongly activated in plants infected by the mutant. Diamino benzidine staining revealed an accumulation of H2O2 around Moatf1 mutant appressoria and rice cells with Moatf1 hyphae that was absent in the wild type. Inhibition of the plant NADPH oxidase by diphenyleneiodonium prevented host-derived H2O2 accumulation and restored infectious hyphal growth of the mutant in rice cells. Thus, we conclude that Moatf1 is necessary for full virulence of M. oryzae by regulating the transcription of laccases and peroxidases to impair reactive oxygen species–mediated plant defense.


Sign in / Sign up

Export Citation Format

Share Document