scholarly journals Vulnerability Assessment of Maize Yield Affected by Precipitation Fluctuations: A Northeastern United States Case Study

Land ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1190
Author(s):  
Peng Su ◽  
Shiqi Li ◽  
Jing’ai Wang ◽  
Fenggui Liu

Crop yields are threatened by global climate change. Maize has high water requirements, and precipitation fluctuations can impact its yield. In this study, we used the Environmental Policy Integrated Climate (EPIC) model to simulate maize yields in eight northeastern U.S. states. We used precipitation fluctuations and the coefficient of variation (CV) of yield as indicators to construct a vulnerability curve for the CV of yield and precipitation fluctuations. We then evaluated the vulnerability of maize yields under precipitation fluctuations in the region. We obtained the following results: (1) the fitted vulnerability curves were classified into three categories (positive slope, negative slope, and insignificant fit), of which the first category accounted for about 92.7%, indicating that the CV of maize yield was positively correlated with precipitation fluctuations in most parts of the study area; and (2) the CV of maize yield under 11 precipitation fluctuation scenarios was mapped to express the CV at the spatial level, and the maize yield in Connecticut and Maryland proved to be the most sensitive to precipitation fluctuations. This study provided a theoretical and experimental basis for the prevention of maize yield risk under fluctuating precipitation conditions.

Author(s):  
Tariwari C.N Angaye ◽  
Koru J. Alagoa

Emission of Hydrogen Sulphide (H2S) from dumpsites has become a global threat due to its impact on global climate change. This study assessed the spatial and seasonal levels of H2S emissions from 6 dumpsites (LA - LF), with portable air quality meter (AEROQUAL-Series 300). Results showed that the spatial level of H2S ranged from 1.40 ppm - 14.34 ppm. Based on seasonal variation level of H2S ranged from 1.88 ppm – 3.86 ppm (p<0.05), with higher values in wet season. Meanwhile H2S were not detected in the control station (LX). Based on model for Air Quality Index (AQI), H2S emission was predominantly rated as safe and moderate, except for the two stations in the central dumpsite (LE and LF). These results confirmed the emission of H2S from the dumpsite due to anthropogenic activities. We therefore recommend policies aimed at sequestration of H2S, by the reduce, reuse and recycle policy of waste stream.


2016 ◽  
Vol 8 (5) ◽  
pp. 95
Author(s):  
Naohiro Matsui

<p>Rainfall in the maize cropping season (Oct-Apr) in the four northern districts of Malawi was examined in terms of seasonal fluctuation and spatial distribution, and data spanning 11 years were analyzed. Rainfall fluctuations in the 11-year period differed considerably among the four districts and the Extension Planning Areas (EPAs) showed high coefficients of variance (CVs) (16.9-93.7). The equation with the three-month rainfall (October, February, and April), i.e., Maize yield (kg/ha) in SH = 2.29 + 0.0042 × Oct rainfall – 0.0009 × Feb rainfall + 0.00045 × Apr rainfall (r<sup>2</sup> = 0.41), better explained maize yield in the 2013/14 season than the equation with total rainfall in the cropping season. Rainfall accounted for more than 41% of the total variation in maize yields of smallholder farmers (SHs). Rainfall in April was the most critical factor influencing maize and other crop yields. After the Farm Input Subsidy Programme (FISP) was implemented in 2005/06, maize yield became more dependent on rainfall. CV was higher in maize than in groundnut and sweet potato, indicating that maize is susceptible to rainfall fluctuations, and groundnut and sweet potato should be incorporated in farming as a countermeasure against unpredictable rainfall.</p>


Author(s):  
Janet Kemuma Ogega ◽  
Beatrice Ang’iyo Were ◽  
Abigael Otinga Nekesa ◽  
John Robert Okalebo

Food insecurity in Sub - Saharan Africa (SSA) is on the rise due to soil fertility depletion and in Kenya, Nitrogen (N) is one of the widely deficient nutrients. Biological nitrogen fixation (BNF) can replenish N into the soil system. A study was carried out in acid soils at Koyonzo and Ligala sites of western Kenya to determine the effectiveness of different inoculants after agricultural lime application in enhancing BNF and yields of groundnuts (Arachis hypogea L.) and maize (Zea mays L.) intercrop. Red Valencia groundnut variety was intercropped with Hybrid 513D maize variety. A6w, W1w and V2w indigenous rhizobia strains were tested alongside a commercial rhizobia strain called biofix. Nitrogen treatment was included as a positive control. The results showed that inoculation significantly increased nodule number and weight per plant. There were significant differences among indigenous rhizobia in fixing N. Rhizobia inoculation accounted for 58.91% and 78.95% increase in the amount of N fixed above the control at Koyonzo and Ligala respectively. The strain that fixed the highest amount of N was A6w followed by V2w and W1w at both sites under the dolomitic soil amendment with the values of 14.67, 9.56, 3.53 and 11.37, 8.20 and 1.50 kg N ha-1, respectively at Koyonzo and Ligala sites. Rhizobia inoculation accounted for 80.96% and 47.09% maize yield increase at Koyonzo and Ligala respectively. The best inoculant A6w, gave maize yields of 3.76 and 2.78 t ha-1 at Koyonzo and Ligala, respectively. In conclusion soil amendment with dolomitic lime and inoculating groundnuts with rhizobia strain A6w resulted in increased groundnut and maize yields. This practice can, therefore, be adopted by farmers in western Kenya to improve the productivity of the groundnut maize intercropping systems.


Author(s):  
Barley Norton

This chapter addresses the cultural politics, history and revival of Vietnamese court orchestras, which were first established at the beginning of the Nguyễn dynasty (1802–1945). Based on fieldwork in the city of Hue, it considers the decolonizing processes that have enabled Vietnamese court orchestras to take their place alongside other East Asian court orchestras as a display of national identity in the global community of nations. The metaphor of ‘orchestrating the nation’ is used to refer to the ways in which Vietnamese orchestras have been harnessed for sociopolitical ends in several historical periods. Court orchestras as heritage have recourse to a generic, precolonial past, yet they are not entirely uncoupled from local roots. Through a case-study of the revival of the Nam Giao Sacrifice, a ritual for ‘venerating heaven’, the chapter addresses the dynamics of interaction and exchange between staged performances of national heritage and local Buddhist and ancestor worship rituals. It argues that with growing concern about global climate change, the spiritual and ecological resonances of the Nam Giao Sacrifice have provided opportunities for the Party-state to reassert its position as the supreme guardian of the nation and its people.


2012 ◽  
Vol 16 (2) ◽  
pp. 179-195
Author(s):  
Almut Beringer ◽  
Steven Douglas

Global climate change and its impacts have ethical dimensions, for instance carbon footprint equity concerns. World issues, including the state of the ecosphere and biodiver­sity, regularly see political leaders, NGOs, business representatives, religious/spiritual orga­nizations, academics, and others engage in international aviation-dependent meetings to address critical challenges facing humanity and the planet. Yet, climate scientists and advocates call for an 80% reduction in greenhouse gas (GHG) emissions by 2050 to cap the increase in global temperatures to 2ºC. Aviation emissions resulting from international meetings raise questions that are not silenced by GHG emissions offsetting. The era of climate change and ‘peak oil’ poses ethical challenges for holding international in-person religious and academic events, especially when the events propound an environmentalist concern and when aviation use is assumed. This paper raises ques­tions regarding the ecological impacts of large international events and focuses the ‘inconvenient truths’ associated with international aviation in the era of global warming. The Parliament of the World’s Religions, the largest multifaith gathering in the world, serves as a case study. The paper emphasizes the view that faith-based/faith-inspired organizations have a special responsibility for leadership in policy and praxis on the moral imperatives of sustainability, sustainable development and climate justice.


2021 ◽  
Vol 3 (5) ◽  
Author(s):  
Terence Epule Epule ◽  
Driss Dhiba ◽  
Daniel Etongo ◽  
Changhui Peng ◽  
Laurent Lepage

AbstractIn sub-Saharan Africa (SSA), precipitation is an important driver of agricultural production. In Uganda, maize production is essentially rain-fed. However, due to changes in climate, projected maize yield targets have not often been met as actual observed maize yields are often below simulated/projected yields. This outcome has often been attributed to parallel gaps in precipitation. This study aims at identifying maize yield and precipitation gaps in Uganda for the period 1998–2017. Time series historical actual observed maize yield data (hg/ha/year) for the period 1998–2017 were collected from FAOSTAT. Actual observed maize growing season precipitation data were also collected from the climate portal of World Bank Group for the period 1998–2017. The simulated or projected maize yield data and the simulated or projected growing season precipitation data were simulated using a simple linear regression approach. The actual maize yield and actual growing season precipitation data were now compared with the simulated maize yield data and simulated growing season precipitation to establish the yield gaps. The results show that three key periods of maize yield gaps were observed (period one: 1998, period two: 2004–2007 and period three: 2015–2017) with parallel precipitation gaps. However, in the entire series (1998–2017), the years 2008–2009 had no yield gaps yet, precipitation gaps were observed. This implies that precipitation is not the only driver of maize yields in Uganda. In fact, this is supported by a low correlation between precipitation gaps and maize yield gaps of about 6.3%. For a better understanding of cropping systems in SSA, other potential drivers of maize yield gaps in Uganda such as soils, farm inputs, crop pests and diseases, high yielding varieties, literacy, and poverty levels should be considered.


2010 ◽  
Vol 11 ◽  
pp. 59-69 ◽  
Author(s):  
Janak Lal Nayava ◽  
Dil Bahadur Gurung

The relation between climate and maize production in Nepal was studied for the period 1970/71-2007/08. Due to the topographical differences within north-south span of the country, Nepal has wide variety of climatic condition. About 70 to 90% of the rainfall occurs during summer monsoon (June to September) and the rest of the months are almost dry. Maize is cultivated from March to May depending on the rainfall distribution. Due to the availability of improved seeds, the maize yield has been steadily increasing after 1987/1988. The national area and yield of maize is estimated to be 870,166ha and 2159kg/ha respectively in 2007/08. The present rate of annual increase of temperature is 0.04°C in Nepal. Trends of temperature rise are not uniform throughout Nepal. An increase of annual temperature at Rampur during 1968-2008 was only 0.039°C. However, at Rampur during the maize growing seasons, March/April - May, the trend of annual maximum temperature had not been changed, but during the month of June and July, the trend of increase of maximum temperature was 0.03°C to 0.04°C /year.Key words: Climate-change; Global-warming; Hill; Mountain; Nepal; TaraiThe Journal of AGRICULTURE AND ENVIRONMENT Vol. 11, 2010Page: 59-69Uploaded Date: 15 September, 2010


Author(s):  
K. Lawle ◽  
A. Moscardini ◽  
I. Pavlenko ◽  
T. Vlasova

This paper develops a detailed case study of the Phillips Curve as it has evolved since Phillips classic work of 1958. An explicit narrative in the paper involves the evolution of the argument using economics and systems thinking, to develop underlying data generating models. These are shown to underpin the inverse relationship between inflation and unemployment in economics. The paper considers the political exigencies relating to the Great inflation of the 1970s and the Great Recession post 2008 in terms of interpretations of the Philips curve. The paper hypothesises that economic ideas have meaningful significance within the context of historical eras with concomitant political imperatives whence such notions become somnolent once crises have abated. This This historical narrative is implicit in the latest research reflections on Philips curves. A particularly useful finding is the relevance of systems thinking and systems dynamics to the interpretation of issues relating to aggregation problems in macroeconomics involving inflation and unemployment causal relationships. The paper concludes that seemingly moribund the Philips curve is alive may have been hibernating. Identifying the Phillips curve requires a wide range of variability of non-aggregative data streams. This allows the negative slope of the curve to be revealed, else the Philips curve slope is pushed towards the vertical plane. Endogenous central banking and inflation targeting intensifies this effect which is evident from a systems thinking /dynamics perspective.


2012 ◽  
Vol 9 (8) ◽  
pp. 9847-9884
Author(s):  
N. Guyennon ◽  
E. Romano ◽  
I. Portoghese ◽  
F. Salerno ◽  
S. Calmanti ◽  
...  

Abstract. Various downscaling techniques have been developed to bridge the scale gap between global climate models (GCMs) and finer scales required to assess hydrological impacts of climate change. Such techniques may be grouped into two downscaling approaches: the deterministic dynamical downscaling (DD) and the stochastic statistical downscaling (SD). Although SD has been traditionally seen as an alternative to DD, recent works on statistical downscaling have aimed to combine the benefits of these two approaches. The overall objective of this study is to examine the relative benefits of each downscaling approach and their combination in making the GCM scenarios suitable for basin scale hydrological applications. The case study presented here focuses on the Apulia region (South East of Italy, surface area about 20 000 km2), characterized by a typical Mediterranean climate; the monthly cumulated precipitation and monthly mean of daily minimum and maximum temperature distribution were examined for the period 1953–2000. The fifth-generation ECHAM model from the Max-Planck-Institute for Meteorology was adopted as GCM. The DD was carried out with the Protheus system (ENEA), while the SD was performed through a monthly quantile-quantile transform. The SD resulted efficient in reducing the mean bias in the spatial distribution at both annual and seasonal scales, but it was not able to correct the miss-modeled non-stationary components of the GCM dynamics. The DD provided a partial correction by enhancing the trend spatial heterogeneity and time evolution predicted by the GCM, although the comparison with observations resulted still underperforming. The best results were obtained through the combination of both DD and SD approaches.


Sign in / Sign up

Export Citation Format

Share Document