scholarly journals Pheophorbide a Derivatives Exert Antiwrinkle Effects on UVB-Induced Skin Aging in Human Fibroblasts

Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 147
Author(s):  
Hwa Lee ◽  
Ho-Yong Park ◽  
Tae-Sook Jeong

Pheophorbide a is a chlorophyll metabolic breakdown product. This study investigated the antiwrinkle effect of pheophorbide a (PA) and its derivatives, including pyropheophorbide a (PyroPA) and pyropheophorbide a methyl ester (PyroPA-ME), on ultraviolet (UV) B-stimulated CCD-986sk fibroblasts. PA, PyroPA, and PyroPA-ME effectively suppressed reactive oxygen species accumulation in UVB-exposed CCD-986sk fibroblasts. All three pheophorbides also reduced UVB-induced matrix metalloproteinase (MMP)-1 secretion and mRNA expression of MMP-1, MMP-2, and MMP-9. Treatment with pheophorbides resulted in increased procollagen synthesis, and this required enhancement of procollagen type I C-peptide content and mRNA expression of collagen type I alpha 1 (COL1A1) and COL1A2 in CCD-986sk cells. These antiwrinkle effects were more potent with PA and PyroPA than with PyroPA-ME. Furthermore, PA and PyroPA suppressed UVB-induced phosphorylation of extracellular signal-regulated protein kinase and c-Jun N-terminal kinase but not p38. Moreover, all three pheophorbides inhibited NF-κB p65 phosphorylation. Therefore, these pheophorbides, especially PA and PyroPA, can be used as antiwrinkle agents, and PA- or PyroPA-rich natural resources can be used in functional cosmetics.

2005 ◽  
Vol 288 (6) ◽  
pp. E1222-E1228 ◽  
Author(s):  
Tomoyuki Iwasaki ◽  
Koji Mukasa ◽  
Masato Yoneda ◽  
Satoshi Ito ◽  
Yoshihiko Yamada ◽  
...  

Dehydroepiandrosterone (DHEA) is a type of adrenal steroid. The concentrations of DHEA and its sulfate (DHEA-S) in serum reach a peak between the ages of 25 and 30 yr and thereafter decline steadily. It was reported that DHEA-S concentration in humans is inversely related to death from cardiovascular diseases. In this study, we examined the effects of DHEA on regulation of collagen mRNA and collagen synthesis in cultured cardiac fibroblasts. Treatment with DHEA (10−6 M) resulted in a significant decrease in procollagen type I mRNA expression compared with controls. This was accompanied by a significant decrease in procollagen type I protein accumulation in the medium and also a significant decrease in procollagen type I protein synthesis in the cellular matrix. Furthermore, to confirm in vitro results, we administered DHEA to Sprague-Dawley rats, which were treated with angiotensin II for 8 wk to induce cardiac damage. Procollagen type I mRNA expression was significantly decreased and cardiac fibrosis significantly inhibited in DHEA-treated rat hearts without lowering the systolic blood pressure. These results strongly indicate that DHEA can directly attenuate collagen type I synthesis at the transcriptional level in vivo and in vitro in cardiac fibroblasts.


2018 ◽  
Vol 65 (1) ◽  
pp. 79-86 ◽  
Author(s):  
Aleksandra Augusciak-Duma ◽  
Joanna Witecka ◽  
Aleksander L. Sieroń ◽  
Magdalena Janeczko ◽  
Jacek J Pietrzyk ◽  
...  

Over 85% of osteogenesis imperfecta (OI) cases associates to mutations in procollagen type I genes (COL1A1 or COL1A2), however, no hot spots were linked to particular clinical phenotypes. The 8 patients whom were clinically diagnosed with OI are from Polish population with no ethnic background indicated. Six unpublished mutations were detected in eight patients diagnosed with OI. Genotypes for polymorphisms (Sp1 - rs1800012 and PvuII - rs412777), linked to bone formation and metabolism were also determined. In COL1A1 gene the mutations were found in exons 2, 22, 50 and in introns 13 and 51. In COL1A2 one mutation was identified in exon 22. Mutations of deletion type in COL1A1 that resulted in OI type I an effect neither on collagen type I secretion nor its intracellular accumulation were detected. Also, a single base substitution in I13 (c.904-9 G>T) was associated with OI type I. The OI type III was associated with single base change in I51 of COL1A1, possibly causing an exon skipping. Also, a missense mutation in COL1A2 changing Gly®Cys in the central part of triple helical domain of the collagen type I molecule caused OI type III. It affected secretion of heterotrimeric form of procollagen type I. However, no intracellular accumulation of procollagen chains could be detected. Mutation in COL1A2 affected its incorporation to procollagen type I. The results shall help in genetic counseling of OI patients and provide rational support in making by them and their families conscious, life important decisions.


2014 ◽  
Vol 5 (2) ◽  
pp. 265-274 ◽  
Author(s):  
Eunson Hwang ◽  
Taek Hwan Lee ◽  
Sang-Yong Park ◽  
Tae Hoo Yi ◽  
Sun Yeou Kim

2011 ◽  
Vol 164 (4) ◽  
pp. 643-648 ◽  
Author(s):  
Maria Luchavova ◽  
Vit Zikan ◽  
Dana Michalska ◽  
Ivan Raska ◽  
Ales A Kubena ◽  
...  

BackgroundWe hypothesized that with the administration of teriparatide (TPTD) treatment at different times, we would be able to modify the physiological circadian rhythm of bone turnover.MethodsThe concentration of serum C-terminal telopeptide of collagen type I (βCTX), serum N-terminal propeptide of procollagen type I (P1NP), serum ionized calcium (iCa), and plasma PTH were measured every 3 h over a 24 h period in 14 postmenopausal osteoporotic women (aged 72.4±9.3 years) treated with 20 μg TPTD for long term, given at different times of the day. General linear model-repeated measurements (GLM RM) were performed to analyze the circadian rhythms as well as intergroup comparisons.ResultsGLM-RM for both related groups showed a significant influence of time of day on all measured variables except P1NP. The analysis for each group separately provided a powerful model for βCTX (P<0.001, η2=0.496), serum iCa (P<0.001, η2=0.423), plasma PTH (P<0.001, η2=0.283), and serum PINP (P<0.001, η2=0.248). While the evening TPTD treatment showed a marked circadian rhythm for serum βCTX, the morning TPTD treatment rather suggested circasemidian rhythm. The P1NP rhythm followed a much smaller amplitude of the rhythm than βCTX. Changes in serum iCa were positively related to changes in serum βCTX (P<0.001) and negatively related to changes in PTH (P<0.001).ConclusionTiming of TPTD administration may significantly change the 24 h variation in bone turnover markers as well as calcium-parathyroid axis in postmenopausal osteoporotic women.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 619
Author(s):  
Dabin Choi ◽  
Wesuk Kang ◽  
Soyoon Park ◽  
Bomin Son ◽  
Taesun Park

Stress is a major contributing factor of skin aging, which is clinically characterized by wrinkles, loss of elasticity, and dryness. In particular, glucocorticoids are generally considered key hormones for promoting stress-induced skin aging through binding to glucocorticoid receptors (GRs). In this work, we aimed to investigate whether β-ionone (a compound occurring in various foods such as carrots and almonds) attenuates dexamethasone-induced suppression of collagen and hyaluronic acid synthesis in human dermal fibroblasts, and to explore the mechanisms involved. We found that β-ionone promoted collagen production dose-dependently and increased mRNA expression levels, including collagen type I α 1 chain (COL1A1) and COL1A2 in dexamethasone-treated human dermal fibroblasts. It also raised hyaluronic acid synthase mRNA expression and hyaluronic acid levels. Notably, β-ionone inhibited cortisol binding to GR, subsequent dexamethasone-induced GR signaling, and the expression of several GR target genes. Our results reveal the strong potential of β-ionone for preventing stress-induced skin aging and suggest that its effects are related to the inhibition of GR signaling in human dermal fibroblasts.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1094.2-1095
Author(s):  
A. S. Siebuhr ◽  
S. F. Madsen ◽  
M. Karsdal ◽  
A. C. Bay-Jensen ◽  
P. Juhl

Background:Systemic sclerosis has vascular, inflammatory and fibrotic components, which may be associated with different growth factors and cytokines. Platelet derived growth factor (PDGF) is associated with the vasculature, whereas tumor necrosis factor beta (TGFβ) is associated with inflammation and fibrosis. We have developed a fibroblast model system of dermal fibrosis for anti-fibrotic drugs testing, but the effect of the fibroblasts mechanistic properties are unknown.Objectives:We investigated different mechanical capacities of PDGF and TGFβ treated human healthy dermal fibroblasts in the SiaJ setting.Methods:Primary human healthy dermal fibroblasts were grown in DMEM medium containing 0.4% fetal calf serum, ficoll (to produce a crowded environment) and ascorbic acid for up to 17 days. A wound was induced by scratching the cells at 0, 1, 3 or 7 days after treatment initiation. Wound closure was followed for 3 days. Contraction capacity was tested by creating gels of human fibroblasts produced collagens containing dermal fibroblasts and contraction was assessed at day 2 by calculating the percentage of gel size to total well size. Collagen type I, III and VI formation (PRO-C1, PRO-C3 and PRO-C6) and fibronectin (FBN-C) were evaluated by validated ELISAs (Nordic Bioscience). Gene expression was analyzed after 2 days in culture. Statistical analyses included One-way ANOVA and student’s t-test.Results:Generally, PDGF closed the wound in half the time of w/o and TGFβ, when treatment and cells are added concurrently or scratched one day after treatment initiation. When treatments were added 3 or 7 days prior to scratch, the cells treated with PDGF had proliferated to a higher degree than w/o and TGFβ. A consequence of this, was that when cells were scratch the sheet of cells produced was lifted from the bottom and fold over itself, leaving a much greater scratch than in the other treatments. However, despite this increased gap the PDGF treated cells closed the wound at the same time as w/o and TGFβ, confirming the results of the cells scratched at day 0 and 1.Inhibition of contraction by ML-7 of otherwise untreated cells inhibited contraction significantly compared to untreated cells alone (p=0.0009). Contraction was increased in both TGFβ and PDGF treated cells compared to untreated cells (both p<0.0001). TGFβ+ ML-7 inhibited the contraction to the level of w/o (p=0.0024), which was only 35% of ML-7 alone. In the contraction study the cells were terminated after 2 days of culture, thus prior to when biomarker of ECM remodeling is usually assessed. However, FBN-C was detectable and a significant release of fibronectin by TGFβ and PDGF compared to w/o was found in the supernatant (both p<0.0001). The gene expression of FBN was only increased with TGFβ (p<0.05) and not PDGF. ML-7 alone tended to decrease FBN-C and in combination with TGFβ the FBN level was significantly decreased compared to TGFβ alone (p<0.0001). However, the level of TGFβ+ML-7 was significantly higher than ML-7 alone (p=0.038).TGFβ increased the gene expression of most genes assessed, except Col6a1. PDGF increased the gene expression of Col3a1, Col5a1 and Col6a1 above the critical fold change of 2, but only significantly in Col5a1 and Col6a1 (both p<0.05).Conclusion:This study demonstrates that TGFβ and PDGF have different mechanical capacities in human healthy dermal fibroblasts; TGFβ increased gene expression of ECM related genes, such as collagens and have increased FBN release in the supernatant already 2 days after initial treatment. PDGF has increased contraction, proliferation and migratory capacities and less expression of ECM related genes and proteins.Disclosure of Interests:Anne Sofie Siebuhr Employee of: Nordic Bioscience, Sofie Falkenløve Madsen: None declared, Morten Karsdal Shareholder of: Nordic Bioscience A/S., Employee of: Full time employee at Nordic Bioscience A/S., Anne-Christine Bay-Jensen Shareholder of: Nordic Bioscience A/S, Employee of: Full time employee at Nordic Bioscience A/S., Pernille Juhl Employee of: Nordic Bioscience


2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 35-35
Author(s):  
Maegan A Reeves ◽  
Courtney E Charlton ◽  
Terry D Brandebourg

Abstract Given adipose tissue is histologically classified as connective tissue, we hypothesized expression of extracellular matrix (ECM) components are significantly altered during adipogenesis. However, little is known about the regulation of the ECM during adipose tissue development in the pig. Therefore, the objective of this study was to characterize expression of ECM components during porcine adipogenesis. Primary cultures of adipose tissue stromal-vascular cells were harvested from 3-day-old neonatal pigs (n=6) and preadipocytes induced to differentiate in vitro for 8 days in the presence of insulin, hydrocortisone, and rosiglitazone. Total RNA was extracted from these cultures on days 0 and 8 post-induction. Real-time PCR was then utilized to determine changes in mRNA expression for collagen type I alpha 1 chain (COL1A), collagen type I alpha 2 chain (COL2A), collagen type I alpha 3 chain (COL3A), collagen type I alpha 4 chain (COL4A), collagen type I alpha 6 chain (COL6A), biglycan, fibronectin, laminin, nitogen-1 (NID1), matrix metallopeptidase 2 (MMP2), matrix metallopeptidase 9 (MMP9), metallopeptidase inhibitor 3 (TIMP3). The mRNA abundances of COL1A, COL3A and MMP2 were significantly downregulated 2.86-fold (P &lt; 0.05), 16.7-fold (P &lt; 0.01) and 3.1-fold (P &lt; 0.05) respectively in day 8 (differentiated) compared to day 0 (undifferentiated) cultures. Meanwhile, mRNA abundances were significantly upregulated during adipogenesis for the COL2A (2.82-fold; P &lt; 0.05), COL4A (2.01-fold; P &lt; 0.05), COL6A (2.8-fold; P &lt; 0.05), biglycan (49.9- fold; P &lt; 0.001), fibronectin (452-fold; P &lt; 0.001), laminin (6.1-fold; P &lt; 0.05), NID1(47.4-fold; P &lt; 0.01), MMP9 (76.8- fold; P &lt; 0.01), and TIMP3(3.04-fold; P &lt; 0.05) genes. These data support the hypothesis that significant changes in ECM components occur during porcine adipogenesis. Modulating adipose tissue ECM remodeling might be a novel strategy to manipulate adiposity in the pig.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Katarzyna A Cieslik ◽  
JoAnn Trial ◽  
Mark L Entman

In the aging mouse (C57BL/6) myocardium fibrosis steadily increases after 14 months of age and is accompanied by elevated numbers of myeloid derived fibroblasts. Recently, we proposed a mechanism by which inflammatory mesenchymal fibroblasts (IMF) derived from mesenchymal stem cells secrete monocyte chemoattractant protein-1 (MCP-1) necessary for myeloid fibroblast induction in the aging heart. The current study extends the characterization of this inflammatory phenotype by describing elevated interleukin-6 (IL-6) secretion and increased expression of IL-6 receptor (IL-6R) in IMF. Since IL-6R lacks an intracellular domain it requires a co-receptor gp130 (generally expressed) to induce an intracellular signal. Thus, generation of an IL-6R soluble receptor allows IL-6 signaling on cells that do not express IL-6R (or expression is low), such as endothelial cells. We investigate the function of IL-6 and IL-6R in the promotion of transendothelial migration of monocytes through cardiac endothelium and their maturation into myeloid fibroblasts in in vitro assay. Treatments with IL-6 and more extensively IL-6+IL-6R resulted in a 3-5 fold increase (above the control level) in myeloid cell migration and maturation into myeloid fibroblasts. Thus IMF can contribute both IL-6 and IL-6R to endothelial cells and facilitate myeloid cell transendothelial migration. In agreement with these data, analysis of the aged mouse heart revealed the presence of fibroblasts expressing IL-6 (procollagen type I + IL-6 + cells), M1 macrophages (CD86 + cells) and M2 macrophages (CD301 + procollagen type I + cells) that were absent in hearts from young mice. The mechanisms by which expression of these factors is upregulated in IMF are being investigated; our data suggest that MCP-1 and IL-6 expression are controlled by the farnesyltransferase (FTase)-Ras-Erk1/2 pathway. Interestingly, since atorvastatin interferes with farnesyl synthesis it also reduced MCP-1 and IL-6 expression in IMF. These data may introduce a new use of this class of drugs in the prevention of the age-related fibrosis.


2011 ◽  
Vol 55 (4) ◽  
pp. 272-278 ◽  
Author(s):  
André Gonçalves da Silva ◽  
José Gilberto H. Vieira ◽  
Ilda Sizue Kunii ◽  
Janaína Martins de Lana ◽  
Marise Lazaretti-Castro

OBJECTIVE: To assess bone turnover markers (BTM) and bone mineral density (BMD) after discontinuation of alendronate treatment used for five or more years. SUBJECTS AND METHODS: 40 patients (pt) with post-menopausal osteoporosis treated with alendronate (10 mg/d) for at least five years (Group 1, G1) had their medication discontinued. Group 2 (G2): 25 pt treated with alendronate for at least one year. Group 3 (G3): 23 treatment-naïve osteoporotic pt. BMD was evaluated in G1 and G2 at baseline and after 12 months. Collagen type I cross-linked C-telopeptide (CTX) and procollagen type 1 N-terminal propeptide (P1NP) levels were measured in all pt at baseline, and in G1 and G2 every three months for 12 months. Data were analyzed using ANOVA on ranks and Mann-Whitney tests. RESULTS: Mean BMD values in G1 and G2 did not differ during follow-up. However, 16 pt (45.7%) in G1 and one (5.2%) in G2 lost BMD (P < 0.001). BTM at baseline was not different between G1 and G2, and both were lower than G3. A significant increase in BTM levels was detected in G1 pt after three months, but not in G2. CONCLUSION: Observed BMD loss and BTM rise after alendronate withdrawal imply that bone turnover was not over suppressed, and alendronate discontinuation may not be safe.


1994 ◽  
Vol 130 (4) ◽  
pp. 381-386 ◽  
Author(s):  
Moustapha Kassem ◽  
Leif Mosekilde ◽  
Erik F Eriksen

Kassem M, Mosekilde L, Eriksen EF. Effects of fluoride on human bone cells in vitro: differences in responsiveness between stromal osteoblast precursors and mature osteoblasts. Eur J Endocrinol 1994;130:381–6. ISSN 0804–4643 The cellular effects of sodium fluoride (NaF) on human bone cells in vitro have been variable and dependent on the culture system used. Variability could be attributed to differences in responsiveness to NaF among different populations of cells at various stages of differentiation in the osteoblastic lineage. In this study we compared the effects of NaF in serum-free medium on cultures of more differentiated human osteoblast-like (hOB) cells derived from trabecular bone explants and on osteoblast committed precursors derived from human bone marrow, i.e. human marrow stromal osteoblast-like (hMS(OB)) cells. Sodium fluoride (10−5 mol/l) increased proliferation of hMS(OB) cells (p<0.05, N = 10) but was not mitogenic to hOB cells (p>0.05, N= 10). Alkaline phosphatase (AP) production increased in both hMS(OB) (p<0.05, N=9) and hOB cells (p<0.05, N=9). No significant effects on procollagen type I propeptide production were obtained in either culture. In the presence of 1,25-dihydroxycholecalciferol (10−9 mol/l), NaF enhanced alkaline phosphatase (p<0.05, N=8), procollagen type I propeptide (p<0.05, N=7) and osteocalcin (p<0.05, N=7) production by hMS(OB) cells but not by hOB cells. Our results suggest that osteoblast precursors are more sensitive to NaF action than mature osteoblasts and that the in vivo effects of NaF on bone formation may be mediated by stimulating proliferation and differentiation of committed osteoblast precursors in bone marrow. M Kassem, Mayo Clinic, Endocrine Research Unit, W-Joseph 5-164, Rochester, MN 55904, USA


Sign in / Sign up

Export Citation Format

Share Document