scholarly journals Phenothiazines Modified with the Pyridine Ring as Promising Anticancer Agents

Life ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 206
Author(s):  
Beata Morak-Młodawska ◽  
Małgorzata Jeleń ◽  
Krystian Pluta

Azaphenothiazines are the largest and most perspective group of modified phenothiazines, and they exhibit variety of biological activities. The review sums up the current knowledge on the anticancer activity of isomeric pyridobenzothiazines and dipyridothiazines, which are modified azaphenothiazines with one and two pyridine rings, respectively, against 10 types of cancer cell lines. Some 10-substituted dipyridothiazines and even 10-unsubstituted parent compounds, such as 10H-1,9-diazaphenothiazine and 10H-3,6-diazaphenothiazine, exhibited very potent action with the IC50 values less than 1 µg/mL and 1 µM against selected cancer cell lines. The strength of the anticancer action depends both on the tricyclic ring scaffolds and the substituents at the thiazine nitrogen atom. The review discusses the kind of the substituents, nature of tricyclic ring scaffolds with the location of the azine nitrogen atoms, the types of the cancer cell lines, and the mechanism of action.

2020 ◽  
Vol 16 ◽  
Author(s):  
Délis Galvão Guimarães ◽  
Arlan de Assis Gonsalves ◽  
Larissa Araújo Rolim ◽  
Edigênia Cavalcante Araújo ◽  
Victória Laysna dos Anjos Santos ◽  
...  

Background: Natural naphthoquinones have shown diversified biological activities including antibacterial, antifungal, antimalarial, and cytotoxic activities. However, they are also compounds with acute cytotoxicity, immunotoxicity, carcinogenesis, and cardio- and hepatotoxicity, then the modification at their redox center is an interesting strategy to overcome such harmful activity. Objective: In this study, four novel semisynthetic hydrazones, derived from the isomers α- and β-lapachones (α and β, respectively) and coupled with the drugs hydralazine (HDZ) and isoniazid (ACIL), were prepared, evaluated by electrochemical methods and assayed for anticancer activity. Method: The semisynthetic hydrazones were obtained and had their molecular structures established by NMR, IR, and MS. Anticancer activity was evaluated by cell viability determined by reduction of 3-(4,5-dimethyl-2-thiazol)-2,5-diphenyl-2H-tetrazolium bromide (MTT). The electrochemical studies, mainly cyclic voltammetry, were performed, in aprotic and protic media. Result: The study showed that the compounds 2, 3, and 4 were active against at least one of the cancer cell lines evaluated, being compounds 3 and 4 the most cytotoxic. Toward HL-60 cells, compound 3 was 20x more active than β-lapachone, and 3x more cytotoxic than doxorubicin. Furthermore, 3 showed an SI value of 39.62 for HL-60 cells. Compound 4 was active against all cancer cells tested, with IC50 values in the range 2.90–12.40 μM. Electrochemical studies revealed a profile typical of self-protonation and reductive cleavage, dependent on the supporting electrolyte. Conclusion: These results therefore indicate that compounds 3 and 4 are strong candidates as prototypes of new antineoplastic drugs.


2019 ◽  
Vol 15 ◽  
Author(s):  
Jing Wang ◽  
Hang Liu ◽  
Xiao-Bin Zhuo ◽  
Guang-Ming Ye ◽  
Qing-Jie Zhao

Background: ‘FufangKushen injection’ was a Chinese Traditional anticancer drug, which has been widely used to treat cancer in combination with other anticancer drugs. Objective: Our goal is to synthesize a series of novel 13-dithiocarbamates matrine derivatives using matrine (1) as the lead compounnd, and evaluate biological activities of obtained compounds. Method: The in vitro cytotoxicity of the target compounds against three human cancer cell lines (Hep3B, LM3 and BeL-7404) was evaluated. To investigate the mechanism of biological activity, Cell cycle analysis were performed. Result: The results revealed that compound 6o and 6v displayed the most significant anticancer activity against three cancer cell lines with IC50 values in range of 3.42–8.05 μM, which showed better activity than the parent compound (Matrine). SAR analysis indicated that introduction of a substituted amino dithiocarbamate might significantly enhance the antiproliferative activity. Conclusion: During the newly synthesized compounds, matrine analogue 6v exhibited a potent effect against three human tumor cell lines. The mode of action of 6v was to inhibit the G0/G1 phase arrest. Therefore, compound 6v has been selected as a novel-scaffold lead for further structural optimizations or as a chemical probe for exploring anticancer pathways of this kinds of compounds.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3944
Author(s):  
José de Jesús Manríquez-Torres ◽  
Marco Antonio Hernández-Lepe ◽  
José Román Chávez-Méndez ◽  
Susana González-Reyes ◽  
Idanya Rubí Serafín-Higuera ◽  
...  

In research on natural molecules with cytotoxic activity that can be used for the development of new anticancer agents, the cytotoxic activity of hexane, chloroform, and methanol extracts from the roots of Acacia schaffneri against colon, lung, and skin cancer cell lines was explored. The hexane extract showed the best activity with an average IC50 of 10.6 µg mL−1. From this extract, three diterpenoids, phyllocladan-16α,19-diol (1), phyllocladan-16α-ol (2), and phylloclad-16-en-3-ol (3), were isolated and characterized by their physical and spectroscopic properties. Diterpenoids 1 and 2 were tested against the same cancer cell lines, as well as their healthy counterparts, CCD841 CoN, MRC5, and VH10, respectively. Compound 1 showed moderate activity (IC50 values between 24 and 70 μg mL−1), although it showed a selective effect against cancer cell lines. Compound 2 was practically inactive. The cytotoxicity mechanism of 1 was analyzed by cell cycle, indicating that the compound induces G0/G1 cell cycle arrest. This effect might be generated by DNA alkylation damage. In addition, compound 1 decreased migration of HT29 cells.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4361
Author(s):  
Ya Wang ◽  
Xiao-Jing Shen ◽  
Fa-Wu Su ◽  
Yin-Rong Xie ◽  
Li-Xia Wang ◽  
...  

Lung cancer is one of the most commonly occurring cancer mortality worldwide. The epidermal growth factor receptor (EGFR) plays an important role in cellular functions and has become the new promising target. Natural products and their derivatives with various structures, unique biological activities, and specific selectivity have served as lead compounds for EGFR. D-glucose and EGCG were used as starting materials. A series of glucoside derivatives of EGCG (7–12) were synthesized and evaluated for their in vitro anticancer activity against five human cancer cell lines, including HL-60, SMMC-7721, A-549, MCF-7, and SW480. In addition, we investigated the structure-activity relationship and physicochemical property–activity relationship of EGCG derivatives. Compounds 11 and 12 showed better growth inhibition than others in four cancer cell lines (HL-60, SMMC-7721, A-549, and MCF), with IC50 values in the range of 22.90–37.87 μM. Compounds 11 and 12 decreased phosphorylation of EGFR and downstream signaling protein, which also have more hydrophobic interactions than EGCG by docking study. The most active compounds 11 and 12, both having perbutyrylated glucose residue, we found that perbutyrylation of the glucose residue leads to increased cytotoxic activity and suggested that their potential as anticancer agents for further development.


Author(s):  
Pratik Yadav ◽  
Ashish Kumar ◽  
Ismail Althagafi ◽  
Vishal Nemaysh ◽  
Reeta Rai ◽  
...  

: Tetrahydroquinoline and isoquinoline scaffolds are important class heterocyclic compounds, which is implied for the development of new drugs and diagnostic for therapeutic function. Naturally occurring as well as synthetic tetrahydroquinolines/isoquinolines possess many different biological activities and have been testified as remarkable cytotoxic and potency in human cancer cell lines. Tetrahydroquinoline/isoquinolines based compounds displayed a key role in the development of anticancer drugs or lead molecules and acting through various mechanisms such as cell proliferation, apoptosis, DNA fragmentation, inhibition of tubulin polymerization, induced cell cycle arrest, interruption of cell migration, and modulation. The number of tetrahydroquinoline/isoquinoline derivatives has been reported as potent anticancer agents. Due to promising anticancer activities and wide-ranging properties of these molecules, we have compiled the literature for the synthesis and anticancer properties of various tetrahydroquinolines and isoquinolines. We have reported the synthesis of potent tetrahydroquinoline/isoquinoline molecules of the last 10 years with their anticancer properties in various cancer cell lines and stated their half-maximal inhibitory concentration (IC50). In addition, we also considered the discussion of molecular docking and structural activity relationship wherever provided to understand the possible mode of activity a target involved and structural feature responsible for the better activity, so the reader can directly find the detail for designing new anticancer agents.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5055-5055
Author(s):  
Serap Erdem Kuruca ◽  
Nilgun Karali ◽  
Beyza Cetin ◽  
Sabriye Karadenizli ◽  
Zeynep Karakas

Abstract 1H-Indole-2,3-dione (isatin) is an endogenous compound identified in many organisms, possesses a wide range of biological activities. Biological properties of isatin include a range of actions in brain and offer protection against certain types of infections. This molecule has a versatile moiety that displays diverse biological activities, including anticancer activity. The discovery of numerous biologically active 3-substituted 2-indolinones led in the past decade to extensive synthesis of related compounds and as a result, anticancer agents were developed. In particular, among the 5-substituted analogs tested in the growth inhibitions against several human cancer cell lines, 5-halide, methoxy and trifluoromethoxy groups containing 3-substituted 2-indolinones show high antiproliferative effects. For this purpose, we first synthesized twelve 5-fluoro-1H-indole-2,3-dione-3-thiosemicarbazones that antituberculosis activities were shown previously by our teamwork and we researched anticancer drug potential in this study. The cytotoxic effects of twelve thiosemicarbazone derivatives were investigated by MTT assay in chronic myeloid leukemia cell lines (K562, HL60), B-lymphoma cell lines (P3HR1) and in vincristine resistant forms. The IC50 values (IC50 is a concentration that kills 50% of cells) were calculated from dose-response curve according to cytotoxicity index. The effectiveness of thiosemicarbazone derivatives were evaluated by comparing IC50 values in leukemic cell lines. All of the compounds were found cytotoxic in B-lymphoma cell lines (P3HR1, P3HR1Vin) in range 0.95–2.41 μM. However, the allyl derivative of thiosemicarbazones has cytotoxic activity in all the cancer cell lines (K562, K562Vin, HL-60, P3HR1, P3HR1Vin) that were tested. As a result, 5-fluoro-1H-indole-2,3-dione-3-thiosemicarbazones derivates might have chemotherapeutic drug potential in B-lymphoma patients. The allyl derivative of thiosemicarbazones has benefit both B-lymphoma and chronic myeloid leukemia patients in a large spectrum.


Molecules ◽  
2019 ◽  
Vol 24 (16) ◽  
pp. 2950 ◽  
Author(s):  
Chen ◽  
Guo ◽  
Ma ◽  
Chen ◽  
Fan ◽  
...  

Utilizing a pharmacophore hybridization approach, we have designed and synthesized a novel series of 28 new heterobivalent β-carbolines. The in vitro cytotoxic potential of each compound was evaluated against the five cancer cell lines (LLC, BGC-823, CT-26, Bel-7402, and MCF-7) of different origin—murine and human, with the aim of determining the potency and selectivity of the compounds. Compound 8z showed antitumor activities with half-maximal inhibitory concentration (IC50) values of 9.9 ± 0.9, 8.6 ± 1.4, 6.2 ± 2.5, 9.9 ± 0.5, and 5.7 ± 1.2 µM against the tested five cancer cell lines. Moreover, the effect of compound 8z on the angiogenesis process was investigated using a chicken chorioallantoic membrane (CAM) in vivo model. At a concentration of 5 μM, compound 8z showed a positive effect on angiogenesis. The results of this study contribute to the further elucidation of the biological regulatory role of heterobivalent β-carbolines and provide helpful information on the development of vascular targeting antitumor drugs.


Author(s):  
JAYACHANDRA KUNCHA ◽  
THIRUGNANASAMBANTHAM P ◽  
KUMARAN S ◽  
NARAYANAN N ◽  
SHARMILA DEVI V

Introduction: The use of natural products as anticancer agents has a long history that began with folklore medicine and through the years has been incorporated into traditional and allopathic medicine. Several drugs currently used are derived from medicinal plants. Objective: The main objective of this study is to investigate the cytotoxic potential of hepatoprotective polyherbal formulation in normal and cancer cell lines. Methods: A 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was utilized to screen the cytotoxic activity. Results: The results revealed that the formulation does not induce much mortality in normal liver and kidney cell lines, and LC50 value of liver cell lines was found 1716.355 μg/ml and kidney cell lines 2464.910 μg/ml. The in vitro anticancer activity was performed on liver, colon, and prostate cancer cell lines, and IC50 values are found 2.077, 3.850, and 11.989 μg/ml, respectively, which show excellent anticancer activity. Conclusion: Based on the results obtained, the hepatoprotective polyherbal formulation is safe for normal cells and cytotoxic for cancer cells. Further, identification and quantification of phytoconstituents responsible for the activity are in progress.


2020 ◽  
Vol 10 (3) ◽  
pp. 216-225
Author(s):  
Hiroyuki Akazawa ◽  
Takuro Shinozaki ◽  
Motohiko Ukiya ◽  
Toshihiro Akihisa ◽  
Manosroi Jiradej ◽  
...  

Background: Artocarpus heterophyllus L. (Jackfruit) has been used traditionally as treatment for inflammation and cancer. The aim of this study was to isolate compounds from A. heterophyllus wood extract and evaluate their biological activities such as anti-tumor promoting effect on Epstein-Barr virus early antigen induction, melanogenesis inhibitory activity on the B16 mouse melanoma 4A5 cell line and cytotoxic activity against three human cancer cell lines (HL60, A549, SK-BR-3). Methods: A. heterophyllus wood was extracted with n-hexane and methanol. The ethyl acetate soluble- fraction separated from the methanol extract was separated and purified with column chromatography to isolate compounds. The structures of isolated compounds were elucidated with spectroscopic methods. These compounds were evaluated for their biological activities. Results: Thirteen known compounds including four prenylflavonoids were isolated from the wood extracts. Nine flavonoids (2, 3, 5-11) exhibited potent anti-tumor promoting activity with IC50 values of 259-296 molar ratio / 32 pmol TPA. Two flavonoids, Norartocarpetin (6) at concentration of 30 μM and cyanomaclurin (11) at the concentration of 100 μM showed melanin content value of 47.6 % and 80.1 %, respectively. Two prenylflavonoids, cudraflavone B (2) and artocarpin (5), showed cytotoxicity against the human cancer cell lines tested. Cudraflavone B (2) showed cytotoxicity against all three human cancer cell lines whereas artocarpin (5) only exhibited cytotoxicity against two out three cell lines testes. The IC50 values were comparable to or better than cisplatin. Conclusion: From the view point of structure activity relationships of the flavonoids isolated, side chains such as prenyl and 3-methyl-1-butenyl moiety were key for their potent biological activities.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3466
Author(s):  
Shoujie Li ◽  
Mingjie Gao ◽  
Xin Nian ◽  
Liyu Zhang ◽  
Jinjie Li ◽  
...  

Sinomenine is a morphinan alkaloid with a variety of biological activities. Its derivatives have shown significant cytotoxic activity against different cancer cell lines in many studies. In this study, two series of sinomenine derivatives were designed and synthesized by modifying the active positions C1 and C4 on the A ring of sinomenine. Twenty-three compounds were synthesized and characterized by spectroscopy (IR, 1H-NMR, 13C-NMR, and HRMS). They were further evaluated for their cytotoxic activity against five cancer cell lines, MCF-7, Hela, HepG2, SW480 and A549, and a normal cell line, Hek293, using MTT and CCK8 methods. The chlorine-containing compounds exhibited significant cytotoxic activity compared to the nucleus structure of sinomenine. Furthermore, we searched for cancer-related core targets and verified their interaction with derivatives through molecular docking. The chlorine-containing compounds 5g, 5i, 5j, 6a, 6d, 6e, and 6g exhibited the best against four core targets AKT1, EGFR, HARS and KARS. The molecular docking results were consistent with the cytotoxic results. Overall, results indicate that chlorine-containing derivatives might be a promising lead for the development of new anticancer agents.


Sign in / Sign up

Export Citation Format

Share Document