Synthesis and Biological Evaluation of matrine derivatives as a Novel Family of Potential Anticancer Agents

2019 ◽  
Vol 15 ◽  
Author(s):  
Jing Wang ◽  
Hang Liu ◽  
Xiao-Bin Zhuo ◽  
Guang-Ming Ye ◽  
Qing-Jie Zhao

Background: ‘FufangKushen injection’ was a Chinese Traditional anticancer drug, which has been widely used to treat cancer in combination with other anticancer drugs. Objective: Our goal is to synthesize a series of novel 13-dithiocarbamates matrine derivatives using matrine (1) as the lead compounnd, and evaluate biological activities of obtained compounds. Method: The in vitro cytotoxicity of the target compounds against three human cancer cell lines (Hep3B, LM3 and BeL-7404) was evaluated. To investigate the mechanism of biological activity, Cell cycle analysis were performed. Result: The results revealed that compound 6o and 6v displayed the most significant anticancer activity against three cancer cell lines with IC50 values in range of 3.42–8.05 μM, which showed better activity than the parent compound (Matrine). SAR analysis indicated that introduction of a substituted amino dithiocarbamate might significantly enhance the antiproliferative activity. Conclusion: During the newly synthesized compounds, matrine analogue 6v exhibited a potent effect against three human tumor cell lines. The mode of action of 6v was to inhibit the G0/G1 phase arrest. Therefore, compound 6v has been selected as a novel-scaffold lead for further structural optimizations or as a chemical probe for exploring anticancer pathways of this kinds of compounds.

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4361
Author(s):  
Ya Wang ◽  
Xiao-Jing Shen ◽  
Fa-Wu Su ◽  
Yin-Rong Xie ◽  
Li-Xia Wang ◽  
...  

Lung cancer is one of the most commonly occurring cancer mortality worldwide. The epidermal growth factor receptor (EGFR) plays an important role in cellular functions and has become the new promising target. Natural products and their derivatives with various structures, unique biological activities, and specific selectivity have served as lead compounds for EGFR. D-glucose and EGCG were used as starting materials. A series of glucoside derivatives of EGCG (7–12) were synthesized and evaluated for their in vitro anticancer activity against five human cancer cell lines, including HL-60, SMMC-7721, A-549, MCF-7, and SW480. In addition, we investigated the structure-activity relationship and physicochemical property–activity relationship of EGCG derivatives. Compounds 11 and 12 showed better growth inhibition than others in four cancer cell lines (HL-60, SMMC-7721, A-549, and MCF), with IC50 values in the range of 22.90–37.87 μM. Compounds 11 and 12 decreased phosphorylation of EGFR and downstream signaling protein, which also have more hydrophobic interactions than EGCG by docking study. The most active compounds 11 and 12, both having perbutyrylated glucose residue, we found that perbutyrylation of the glucose residue leads to increased cytotoxic activity and suggested that their potential as anticancer agents for further development.


Author(s):  
Pratik Yadav ◽  
Ashish Kumar ◽  
Ismail Althagafi ◽  
Vishal Nemaysh ◽  
Reeta Rai ◽  
...  

: Tetrahydroquinoline and isoquinoline scaffolds are important class heterocyclic compounds, which is implied for the development of new drugs and diagnostic for therapeutic function. Naturally occurring as well as synthetic tetrahydroquinolines/isoquinolines possess many different biological activities and have been testified as remarkable cytotoxic and potency in human cancer cell lines. Tetrahydroquinoline/isoquinolines based compounds displayed a key role in the development of anticancer drugs or lead molecules and acting through various mechanisms such as cell proliferation, apoptosis, DNA fragmentation, inhibition of tubulin polymerization, induced cell cycle arrest, interruption of cell migration, and modulation. The number of tetrahydroquinoline/isoquinoline derivatives has been reported as potent anticancer agents. Due to promising anticancer activities and wide-ranging properties of these molecules, we have compiled the literature for the synthesis and anticancer properties of various tetrahydroquinolines and isoquinolines. We have reported the synthesis of potent tetrahydroquinoline/isoquinoline molecules of the last 10 years with their anticancer properties in various cancer cell lines and stated their half-maximal inhibitory concentration (IC50). In addition, we also considered the discussion of molecular docking and structural activity relationship wherever provided to understand the possible mode of activity a target involved and structural feature responsible for the better activity, so the reader can directly find the detail for designing new anticancer agents.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3466
Author(s):  
Shoujie Li ◽  
Mingjie Gao ◽  
Xin Nian ◽  
Liyu Zhang ◽  
Jinjie Li ◽  
...  

Sinomenine is a morphinan alkaloid with a variety of biological activities. Its derivatives have shown significant cytotoxic activity against different cancer cell lines in many studies. In this study, two series of sinomenine derivatives were designed and synthesized by modifying the active positions C1 and C4 on the A ring of sinomenine. Twenty-three compounds were synthesized and characterized by spectroscopy (IR, 1H-NMR, 13C-NMR, and HRMS). They were further evaluated for their cytotoxic activity against five cancer cell lines, MCF-7, Hela, HepG2, SW480 and A549, and a normal cell line, Hek293, using MTT and CCK8 methods. The chlorine-containing compounds exhibited significant cytotoxic activity compared to the nucleus structure of sinomenine. Furthermore, we searched for cancer-related core targets and verified their interaction with derivatives through molecular docking. The chlorine-containing compounds 5g, 5i, 5j, 6a, 6d, 6e, and 6g exhibited the best against four core targets AKT1, EGFR, HARS and KARS. The molecular docking results were consistent with the cytotoxic results. Overall, results indicate that chlorine-containing derivatives might be a promising lead for the development of new anticancer agents.


2020 ◽  
Vol 17 (5) ◽  
pp. 345-351
Author(s):  
Syndla Premalatha ◽  
G. Rambabu ◽  
Islavathu Hatti ◽  
Dittakavi Ramachandran

A new series of 3-(3,4,5-trimethoxyphenyl)-5-(2-(5-arylbenzo[b]thiophen-3-yl)oxa zol-5- yl)isoxazole derivatives were designed and synthesized. All these derivatives were evaluated for their anticancer activity against various human cancer cell lines such as MCF-7 (breast cancer), A549 (lung cancer), DU-145 (prostate cancer) and MDA MB-231 (breast cancer)-four human cancer cell lines by using MTT assay. Here, etoposide was used as a standard reference drug and most of the compounds were exhibited good anticancer activity with respect to cell lines. Among all compounds, five compounds 11b, 11c, 11f, 11i and 11j showed more potent activity than standard drug, in which, compound 11f was the most promising compound.


2021 ◽  
Vol 22 (14) ◽  
pp. 7631
Author(s):  
Lisa Wolff ◽  
Siva Sankar Murthy Bandaru ◽  
Elias Eger ◽  
Hoai-Nhi Lam ◽  
Martin Napierkowski ◽  
...  

Pentathiepins are polysulfur-containing compounds that exert antiproliferative and cytotoxic activity in cancer cells, induce oxidative stress and apoptosis, and inhibit glutathione peroxidase (GPx1). This renders them promising candidates for anticancer drug development. However, the biological effects and how they intertwine have not yet been systematically assessed in diverse cancer cell lines. In this study, six novel pentathiepins were synthesized to suit particular requirements such as fluorescent properties or improved water solubility. Structural elucidation by X-ray crystallography was successful for three derivatives. All six underwent extensive biological evaluation in 14 human cancer cell lines. These studies included investigating the inhibition of GPx1 and cell proliferation, cytotoxicity, and the induction of ROS and DNA strand breaks. Furthermore, selected hallmarks of apoptosis and the impact on cell cycle progression were studied. All six pentathiepins exerted high cytotoxic and antiproliferative activity, while five also strongly inhibited GPx1. There is a clear connection between the potential to provoke oxidative stress and damage to DNA in the form of single- and double-strand breaks. Additionally, these studies support apoptosis but not ferroptosis as the mechanism of cell death in some of the cell lines. As the various pentathiepins give rise to different biological responses, modulation of the biological effects depends on the distinct chemical structures fused to the sulfur ring. This may allow for an optimization of the anticancer activity of pentathiepins in the future.


Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2530
Author(s):  
Ihsan A. Shehadi ◽  
Fatima-Azzahra Delmani ◽  
Areej M. Jaber ◽  
Hana Hammad ◽  
Murad A. AlDamen ◽  
...  

Four new complexes derived from adamantly containing hydrazone (APH) ligand with Cu(II) (1), Co(II) (2), Ni(II) (3) and Zn(II) (4), have been synthesized and characterized using different physicochemical methods. The structure of the ligand APH and its copper complex 1 have been established by single-crystal X-ray diffraction direct methods, which reveal that complex 1 has distorted square-pyramidal geometry. Complexes 1–4 are screened against seven human cancer cell lines namely, breast cancer cell lines (MCF7, T47D, MDA-MB-231), prostate cancer cell lines (PC3, DU145) and the colorectal cancer cell line Coco-2, for their antiproliferative activities. Complex 1 has shown a promising anticancer activity compared to the other ones. The structural and spectroscopic analysis of APH and its complexes are confirmed by DFT calculations.


Author(s):  
Amira El-Sayed ◽  
Maher El-Hashash ◽  
Wael El-Sayed

Background: Cancer exerts a huge strain on the health system. The emerging resistance to the current chemotherapies demands the continuous development of new anticancer agents with lower cost, higher efficacy, and greater specificity. Objective: Development of selective small molecules targeted anticancer agents Methods: The behavior of benzoxazinone 2 towards nitrogen nucleophiles such as hydrazine hydrate, formamide, ethanolamine, aromatic amines, and thiosemcarbazide was described. The behavior of the amino quinazolinone 3 towards carbon electrophiles and P2S5 was also investigated. The antiproliferative activity of 17 new benzoxazinone derivatives was examined against the growth of three human cancer cell lines; liver HepG2, breast MCF-7, and colon HCT-29, in addition to the normal human fibroblasts WI-38 and the selectivity index was calculated. The possible molecular pathways such as the cell cycle and apoptosis were investigated. Results: Derivatives 3, 7, 8, 10, 13, and 15 had a significant (less than 10 µM) antiproliferative activity against the three cancer cell lines investigated. Derivative 7 showed the best antiproliferative profile comparable to that of doxorubicin. The selectivity index for all the effective derivatives ranged from ~5-12 folds indicating high selectivity against the cancer cells. Derivative 15 caused ~ 7-fold and 8-fold inductions in the expression of p53 and caspase3, respectively. It also caused a ~ 60% reduction in the expression of both topoisomerase II (topoII) and cyclin-dependent kinase 1 (cdk1). Derivatives 3, 7, and 8 had a similar profile; ~ 6-8-fold increases in the expression of p53 and caspase3 but these compounds were devoid of any significant effect on the expression of topoII and cdk1. Derivatives 10 and 13 were also similar and resulted in a ~6-fold elevation in the expression of caspase3, and more than 60% downregulation in the expression of topoII. The results of the gene expression of topoII and caspase 3 were confirmed by the measurement of the topoII concentration and caspase3 activity in the HepG2 cells. Conclusion: Six derivatives exerted their antiproliferative activity by arresting the cell cycle (decreasing cdk1), preventing the DNA duplication (downregulating topo II), and by inducing apoptosis (inducing p53 and caspase3). One common feature in all the six active derivatives is the presence of free amino group. These compounds have merit for further investigations.


2021 ◽  
Vol 13 (20) ◽  
pp. 1743-1766
Author(s):  
Islam H El Azab ◽  
Essa M Saied ◽  
Alaa A Osman ◽  
Amir E Mehana ◽  
Hosam A Saad ◽  
...  

Thiazole-substituted pyrazole is an important structural feature of many bioactive compounds, including antiviral, antitubercular, analgesic and anticancer agents. Herein we describe an efficient and facile approach for the synthesis of two series of 36 novel N-bridged pyrazole-1-phenylthiazoles. The antiproliferative activity of a set of representative compounds was evaluated in vitro against different human cancer cell lines. Among the identified compounds, compound 18 showed potent anticancer activity against the examined cancer cell lines. The in silico molecular docking study revealed that compound 18 possesses high binding affinity toward both SK1 and CDK2. Overall, these results indicate that compound 18 is a promising lead anticancer compound which may be exploited for development of antiproliferative drugs.


2013 ◽  
Vol 8 (12) ◽  
pp. 1934578X1300801 ◽  
Author(s):  
Sumit S Chourasiya ◽  
Eppakayala Sreedhar ◽  
K. Suresh Babu ◽  
Nagula Shankaraiah ◽  
V. Lakshma Nayak ◽  
...  

Bioactivity guided investigation of the DCM: MeOH (1:1) extract from the rhizomes of Alpinia galanga led to the isolation of phenylpropanoids (1–9) and their structures were established by 1H NMR, 13C NMR, IR and LC-MS/MS. These compounds have been evaluated for their in vitro anticancer activity against the human cancer cell lines A549 (lung cancer), Colo-205 (colon cancer), A431 (skin cancer), NCI H460 (lung cancer), PC-3 (prostate cancer), and HT-29 (colon cancer). Compounds 4 and 9 showed potent anticancer activity (ranging from 1.3–19.7 μg/mL) against all the tested cancer cell lines. In addition, an asymmetric synthesis of acetoxychavicol acetate (1) and trans-p-coumaryl alcohol (4) has been accomplished in six steps starting from readily available p-hydroxybenzaldehyde for the first time. Grignard reaction and Sharpless kinetic resolution reactions were utilized as the key steps to install the basic core.


2013 ◽  
Vol 91 (8) ◽  
pp. 741-754 ◽  
Author(s):  
Karam Chand ◽  
Amir Nasrolahi Shirazi ◽  
Preeti Yadav ◽  
Rakesh K. Tiwari ◽  
Meena Kumari ◽  
...  

A series of 6- and 8-cinnamoylchromen-2-one and dihydropyranochromen-2-one derivatives were synthesized and their antiproliferative activities were evaluated against three human cancer cell lines, i.e., ovarian adenocarcinoma (SK-OV-3), leukemia (CCRF-CEM), and breast carcinoma (MCF-7). In general, 8-cinnamoylchromen-2-one derivatives were found to have higher antiproliferative activity against the cancer cells when compared with 6-cinnamoyl analogues. Among all of the hybrid chromen-2-one − chalcone/flavanone compounds, a 7-hydroxy-8-cinnamoylchromen-2-one derivative 35 was found to be consistently active against all the cancer cell lines and inhibited the cell proliferation of SK-OV-3, CCRF-CEM, and MCF-7 by 63%, 50%, and 43%, respectively, at a concentration of 50 μmol/L after 72 h of incubation. This compound also exhibited the highest Src kinase inhibition (IC50 = 14.5 μmol/L). Structure−activity relationship studies provided insights for designing the next generation of chromen-2-one − chalcone hybrid prototypes and the development of new leads as anticancer agents and (or) Src kinase inhibitors.


Sign in / Sign up

Export Citation Format

Share Document