scholarly journals Microfluidic Platforms to Unravel Mysteries of Alzheimer’s Disease: How Far Have We Come?

Life ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1022
Author(s):  
Pragya Prasanna ◽  
Shweta Rathee ◽  
Vedanabhatla Rahul ◽  
Debabrata Mandal ◽  
Macherla Sharath Chandra Goud ◽  
...  

Alzheimer’s disease (AD) is a significant health concern with enormous social and economic impact globally. The gradual deterioration of cognitive functions and irreversible neuronal losses are primary features of the disease. Even after decades of research, most therapeutic options are merely symptomatic, and drugs in clinical practice present numerous side effects. Lack of effective diagnostic techniques prevents the early prognosis of disease, resulting in a gradual deterioration in the quality of life. Furthermore, the mechanism of cognitive impairment and AD pathophysiology is poorly understood. Microfluidics exploits different microscale properties of fluids to mimic environments on microfluidic chip-like devices. These miniature multichambered devices can be used to grow cells and 3D tissues in vitro, analyze cell-to-cell communication, decipher the roles of neural cells such as microglia, and gain insights into AD pathophysiology. This review focuses on the applications and impact of microfluidics on AD research. We discuss the technical challenges and possible solutions provided by this new cutting-edge technique to understand disease-associated pathways and mechanisms.

Author(s):  
Pragya Prasanna ◽  
Shweta Rathee ◽  
V. Rahul ◽  
M.S. Chandra ◽  
Niraj Kumar Jha ◽  
...  

Alzheimer’s Disease (AD) is a significant health concern worldwide with enormous social and economic impact globally. The gradual deterioration of cognitive functions and irreversible neuronal losses are primary etiological features of the disease. Even after decades of research, most therapeutic options are merely symptomatic, and drugs in clinical practice present numerous side effects. Lack of effective diagnostic techniques prevents the early prognosis of disease, resulting in a gradual deterioration in the quality of life. Furthermore, the mechanism of cognitive impairment and AD pathophysiology is poorly understood. Microfluidics exploits different microscale properties of fluids to mimic environments on microfluidic chip-like devices. These miniature multichambered devices can be used to grow cells and 3D tissues in vitro, analyze cell-to-cell communication, decipher the roles of neural cells like microglia, and gain insights into AD pathophysiology. This review focuses on the applications and impact of microfluidics on AD research. We discuss the technical challenges and possible solutions provided by this new cutting-edge technique to understand disease-associated pathways and mechanisms.


Author(s):  
Pragya Prasanna ◽  
Shweta Rathee ◽  
V Rahul ◽  
Debabrata Mandal ◽  
M.S. Chandra ◽  
...  

Alzheimer’s disease (AD) is a significant health concern worldwide with enormous social and economic impact globally. The gradual deterioration of cognitive functions and irreversible neuronal losses are primary features of the disease. Even after decades of research, most therapeutic options are merely symptomatic, and drugs in clinical practice present numerous side effects. Lack of effective diagnostic techniques prevents the early prognosis of disease, resulting in a gradual deterioration in the quality of life. Furthermore, the mechanism of cognitive impairment and AD pathophysiology is poorly understood. Microfluidics exploits different microscale properties of fluids to mimic environments on microfluidic chip-like devices. These miniature multichambered devices can be used to grow cells and 3D tissues in vitro, analyze cell-to-cell communication, decipher the roles of neural cells like microglia, and gain insights into AD pathophysiology. This review focuses on the applications and impact of microfluidics on AD research. We discuss the technical challenges and possible solutions provided by this new cutting-edge technique to understand disease-associated pathways and mechanisms.


2020 ◽  
Vol 20 (15) ◽  
pp. 1499-1517 ◽  
Author(s):  
Maryam Ghaffari ◽  
Nima Sanadgol ◽  
Mohammad Abdollahi

Recently, manipulation of gene expression and switching genes on or off highlight the potential of nucleic acid-based therapies (NA-BTs). Alzheimer’s Disease (AD) is a common devastating neurodegenerative disease (NDs) responsible for 60-80% of all cases of dementia and predicted as a main public health concern among aged populations. The aim of this study was to outline the current research in the field of NA-BTs for the treatment of AD disabilities, including strategies to suppress the memory and learning defects, to promote recovery processes, and to reinforce social relationships in these patients. This review was performed via evaluating PubMed reported studies from January 2010 to November 2019. Also, reference lists were checked to find additional studies. All intermediation or complementarity of animal models, case-control and cohort studies, and controlled trials (CTs) on specific NA-BTs to AD were acceptable, although in vitro studies were excluded due to the considerable diversities and heterogeneities. After removing the duplicates according to preferred reporting items for systematic reviews and meta-analyses (PRISMA) instruction, we merged remaining titles across search databases. There are 48 ongoing studies related to the application of nucleic acids in the treatment and diagnosis of AD where more consideration is given to DNA targeting strategies (18 targets for vectors and aptamers), antisense oligonucleotides (10 targets), micro-RNAs mimics (7 targets), antagomiRs (6 targets), small interferences-RNAs (5 targets), as well as mRNAs (2 targets) respectively. All of these targets are grouped into 4 categories according to their role in molecular pathways where amyloid-β (18 targets), neural survival (11 targets), memory and cognition (8 targets), and tau (3 targets) are more targeted pathways, respectively. With recent successes in the systemic delivery of nucleic acids via intravenous injection; it is worth investing in the production of new-generation medicines. There are still several challenges for NA-BTs including, their delivery to the effective modulators, mass production at low cost, sustaining efficacy and minimizing off‐target effects. Regarding miRNA-based therapies, given the obvious involvement of miRNAs in numerous facets of brain disease, and the many sophisticated techniques for delivery to the brain, miRNA-based therapies will make new hope for the treatment of neurological diseases such as AD.


2021 ◽  
Vol 18 ◽  
Author(s):  
Chiara Burgaletto ◽  
Giulia Di Benedetto ◽  
Antonio Munafò ◽  
Renato Bernardini ◽  
Giuseppina Cantarella

Background: Alzheimer’s disease (AD) is the most common form of neurodegenerative disorder characterized by cognitive impairment, which represents an urgent public health concern. Given the worldwide impact of AD, there is a compelling need for effective therapies to slow down or halt this disorder. Objective: Choline alphoscerate (α-GPC) represents a potentially effective cholinergic neurotrans- mission enhancing agent with an interesting clinical profile in cognitive dysfunctions improve- ment, although only scanty data are available about the mechanisms underlying such beneficial ef- fects. Method: The SH-SY5Y neuronal cell line, differentiated for 1 week with 10 μm of all-trans-reti- noic acid (RA), to achieve a switch towards a cholinergic phenotype, was used as an in vitro model of AD. SH-SY5Y cells were pre-treated for 1h with α-GPC (100nM) and treated for 72 h with Aβ25-35 (10μM). Results: α-GPC was able to antagonize Aβ25-35 mediated neurotoxicity and attenuate the Aβ-in- duced phosphorylation of the Tau protein. Moreover, α-GPC exerted its beneficial effects by em- ploying the NGF/TrkA system, knocked down in AD and, consequently, by sustaining the expres- sion level of synaptic vesicle proteins, such as synaptophysin. Conclusion: Taken together, our data suggest that α-GPC can have a role in neuroprotection in the course of toxic challenges with Aβ. Thus, a deeper understanding of the mechanism underlying its beneficial effect, could provide new insights into potential future pharmacological applications of its functional cholinergic enhancement, with the aim to mitigate AD and could represent the basis for innovative therapy.


Author(s):  
Shivani Sharma

Alzheimer’s disease is that the most common cause of dementia in older, individuals and a major public health concern. The goal of this critical evaluation is to provide a short overview of Alzheimer’s disease. The study concentrates on the biochemical aspects of AD and MCI. It is the fourth most common cause of mortality in the United States, and it is spreading to other nations. With Alzheimer's disease, the total size of the brain decreases as the tissue loses nerve cells and connections. The loss of brain cells that occurs as a result of insanity cannot be stopped or reversed. The set up's aims include measurements for gift interventions in addition to an aim to improve research on interference and therapy. Although there are no disease-modifying medications available for Alzheimer's disease, certain options may help to reduce symptoms and enhance quality of life, therefore assisting patients to some extent. In addition, the paper discusses current attempts to create innovative treatments and improvements in the use of biomarkers for diagnosing SD.


GeroPsych ◽  
2020 ◽  
pp. 1-6
Author(s):  
Molly Maxfield ◽  
Jennifer R. Roberts ◽  
JoAnna Dieker

Abstract. Two clients seeking neuropsychological assessment reported anxiety about their cognitive status. We review the cases to increase our understanding of factors contributing to dementia-related anxiety. Case 1 met the criteria for mild neurocognitive disorder; the client’s memory was impaired, and she had a high genetic risk for Alzheimer’s disease. The client reported anxiety about negative perceptions of quality of life among individuals diagnosed with Alzheimer’s disease. Case 2 did not meet the criteria for a neurocognitive disorder. Anxiety about this client’s cognitive status appeared attributable to generalized anxiety disorder, given his anxiety about diverse topics. Both clients reported embarrassment about forgetfulness and social withdrawal. Dementia-related anxiety is believed to be relatively common, to exist on a continuum, to have unique social implications, and to stem from various sources, necessitating differing interventions.


2010 ◽  
Vol 51 (02) ◽  
pp. 72 ◽  
Author(s):  
Oscar Rosas Carrasco ◽  
Laura del Pilar Torres Arreola ◽  
María de Guadalupe Guerra Silla ◽  
Sara Torres Castro ◽  
Luis Miguel Gutiérrez Robledo

2020 ◽  
Vol 18 (4) ◽  
pp. 354-359
Author(s):  
Shirin Tarbiat ◽  
Azize Simay Türütoğlu ◽  
Merve Ekingen

Alzheimer's disease is a neurodegenerative disorder characterized by memory loss and impairment of language. Alzheimer's disease is strongly associated with oxidative stress and impairment in the cholinergic pathway, which results in decreased levels of acetylcholine in certain areas of the brain. Hence, inhibition of acetylcholinesterase activity has been recognized as an acceptable treatment against Alzheimer's disease. Nature provides an array of bioactive compounds, which may protect against free radical damage and inhibit acetylcholinesterase activity. This study compares the in vitro antioxidant and anticholinesterase activities of hydroalcoholic extracts of five cultivars of Rosa Damascena Mill. petals (R. damascena 'Bulgarica', R. damascena 'Faik', R. damascena 'Iranica', R. damascena 'Complex-635' and R. damascena 'Complex-637') from Isparta, Turkey. The antioxidant activities of the hydroalcoholic extracts were tested for ferric ion reduction and DPPH radical scavenging activities. The anti-acetylcholinesterase activity was also evaluated. All rose cultivars showed a high potency for scavenging free radical and inhibiting acetylcholinesterase activity. There was a significant correlation between antioxidant and acetylcholinesterase inhibitory activity. Among cultivars, Complex-635 showed the highest inhibitory effect with an IC50 value of 3.92 µg/mL. Our results suggest that all these extracts may have the potential to treat Alzheimer's disease with Complex-635 showing more promise.


2020 ◽  
Vol 27 ◽  
Author(s):  
Reyaz Hassan Mir ◽  
Abdul Jalil Shah ◽  
Roohi Mohi-ud-din ◽  
Faheem Hyder Potoo ◽  
Mohd. Akbar Dar ◽  
...  

: Alzheimer's disease (AD) is a chronic neurodegenerative brain disorder characterized by memory impairment, dementia, oxidative stress in elderly people. Currently, only a few drugs are available in the market with various adverse effects. So to develop new drugs with protective action against the disease, research is turning to the identification of plant products as a remedy. Natural compounds with anti-inflammatory activity could be good candidates for developing effective therapeutic strategies. Phytochemicals including Curcumin, Resveratrol, Quercetin, Huperzine-A, Rosmarinic acid, genistein, obovatol, and Oxyresvertarol were reported molecules for the treatment of AD. Several alkaloids such as galantamine, oridonin, glaucocalyxin B, tetrandrine, berberine, anatabine have been shown anti-inflammatory effects in AD models in vitro as well as in-vivo. In conclusion, natural products from plants represent interesting candidates for the treatment of AD. This review highlights the potential of specific compounds from natural products along with their synthetic derivatives to counteract AD in the CNS.


2019 ◽  
Vol 20 (1) ◽  
pp. 56-62 ◽  
Author(s):  
Chi Zhang ◽  
Zhichun Gu ◽  
Long Shen ◽  
Xianyan Liu ◽  
Houwen Lin

Background: To deliver drugs to treat Alzheimer’s Disease (AD), nanoparticles should firstly penetrate through blood brain barrier, and then target neurons. Methods: Recently, we developed an Apo A-I and NL4 dual modified nanoparticle (ANNP) to deliver beta-amyloid converting enzyme 1 (BACE1) siRNA. Although promising in vitro results were obtained, the in vivo performance was not clear. Therefore, in this study, we further evaluated the in vivo neuroprotective effect and toxicity of the ANNP/siRNA. The ANNP/siRNA was 80.6 nm with good stability when incubated with serum. In vivo, the treatment with ANNP/siRNA significantly improves the spatial learning and memory of APP/PS1 double transgenic mice, as determined by mean escape latency, times of crossing the platform area during the 60 s swimming and the percentage of the distance in the target quadrant. Results and Conclusion: After the treatment, BACE1 RNA level of ANNP/siRNA group was greatly reduced, which contributed a good AD treatment outcome. Finally, after repeated administration, the ANNP/siRNA did not lead to significant change as observed by HE staining of main organs, suggesting the good biocompatibility of ANNP/siRNA. These results demonstrated that the ANNP was a good candidate for AD targeting siRNA delivery.


Sign in / Sign up

Export Citation Format

Share Document