scholarly journals Mechano-Immunomodulation in Space: Mechanisms Involving Microgravity-Induced Changes in T Cells

Life ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1043
Author(s):  
Sarit Dhar ◽  
Dilpreet Kaur Kaeley ◽  
Mohamad Jalal Kanan ◽  
Eda Yildirim-Ayan

Of the most prevalent issues surrounding long-term spaceflight, the sustainability of human life and the maintenance of homeostasis in an extreme environment are of utmost concern. It has been observed that the human immune system is dysregulated in space as a result of gravitational unloading at the cellular level, leading to potential complications in astronaut health. A plethora of studies demonstrate intracellular changes that occur due to microgravity; however, these ultimately fall short of identifying the underlying mechanisms and dysfunctions that cause such changes. This comprehensive review covers the changes in human adaptive immunity due to microgravity. Specifically, there is a focus on uncovering the gravisensitive steps in T cell signaling pathways. Changes in gravitational force may lead to interrupted immune signaling cascades at specific junctions, particularly membrane and surface receptor-proximal molecules. Holistically studying the interplay of signaling with morphological changes in cytoskeleton and other cell components may yield answers to what in the T cell specifically experiences the consequences of microgravity. Fully understanding the nature of this problem is essential in order to develop proper countermeasures before long-term space flight is conducted.

2021 ◽  
Vol 14 ◽  
Author(s):  
Vipin V. Dhote ◽  
Muthu Kumaradoss Mohan Maruga Raja ◽  
Prem Samundre ◽  
Supriya Sharma ◽  
Shraddha Anwikar ◽  
...  

: Sports deserve a special place in human life to impart healthy and refreshing wellbeing. However, sports activities, especially contact sports, renders athlete vulnerable to brain injuries. Athletes participating in a contact sport like boxing, rugby, American football, wrestling, and basketball are exposed to traumatic brain injuries (TBI) or concussions. The acute and chronic nature of these heterogeneous injuries provides a spectrum of dysfunctions that alters the neuronal, musculoskeletal, and behavioral responses of an athlete. Many sports-related brain injuries go unreported, but these head impacts trigger neurometabolic disruptions that contribute to long-term neuronal impairment. The pathophysiology of post-concussion and its underlying mechanisms are undergoing intense research. It also shed light on chronic disorders like Parkinson's disease, Alzheimer's disease, and dementia. In this review, we examined post-concussion neurobehavioral changes, tools for early detection of signs, and their impact on the athlete. Further, we discussed the role of nutritional supplements in ameliorating neuropsychiatric diseases in athletes.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A862-A862
Author(s):  
Zachary Sethna ◽  
Marta Luksza ◽  
Luis Rojas ◽  
Kevin Soares ◽  
Joanne Leung ◽  
...  

BackgroundCancer immunoediting predicts that T cells selectively kill tumor cells expressing immunogenic mutations (neoantigens) resulting in less immunogenic clones to outgrow in tumors.1 Although established through longitudinal studies of how tumors evolve in immune-proficient and -deficient mice,1 2 whether the human immune system naturally targets neoantigens to edit tumors, and the principles that identify the edited neoantigens, remains unclear.MethodsTo investigate if immune selective pressures on neoantigens alter how human tumors evolve, we longitudinally studied how 70 human pancreatic ductal adenocarcinomas (PDACs) - a poorly immunogenic cancer largely presumed to not be subject to immunoediting - evolved over 10 years. We use exome sequencing, neoantigen identification, and clonal reconstruction to compare how primary PDACs evolve to recurrence in rare long-term PDAC survivors previously shown to have more immunogenic tumors3 (n = 9 patients, n = 9 primary, 22 recurrent tumors), to short-term survivors with less immunogenic primary tumors (n = 6 patients, n = 6 primary, 33 recurrent tumors). To identify immunogenic “high quality” neoantigens, we use neopeptide-T cell functional assays and computational modeling to extend and apply a previously developed neoantigen quality model3 4 by predicting high quality neoantigens as arising from amino acid substitutions with sufficient antigenic distance from cognate wild-type peptides to differentially bind the MHC or activate a T cell.ResultsCompared to short-term survivors, we observe that long-term survivors evolve fewer recurrent tumors with longer latency, and distinct tissue tropism. To evaluate if differential immune pressures explained these differences, we discover that despite longer times to evolve, long-term survivors evolve genetically less heterogeneous tumors with fewer clones, fewer nonsynonymous mutations, and fewer neoantigens. To identify if high quality neoantigens are selectively edited in recurrent tumors of long-term survivors, we observe that neoantigens with greater antigenic distance (“less self”) are more depleted in primary and recurrent tumors of long- compared to short-term survivors. Furthermore, we find that long-term survivors evolve markedly fewer new neoantigens of strikingly lower quality, to indicate clones with high quality neoantigens are immunoedited.ConclusionsWe submit longitudinal evidence that the human immune system naturally edits neoantigens in PDAC. Furthermore, we present a model that describes how cancer neoantigens evolve under immune pressure over time, with implications for cancer biology and therapy. More broadly, our results argue that immunoediting is a fundamental cancer suppressive mechanism that can be quantified to predict tumor evolution.AcknowledgementsThis work was supported by NIH U01 CA224175 (V.P.B), a Stand Up to Cancer Convergence Award (B.D.G, V.P.B.), a Damon Runyon Clinical Investigator Award (V.P.B), and the Avner Pancreatic Cancer Foundation (A.J, A.G). Services by the Integrated Genomics Core were funded by the NCI Cancer Center Support Grant (P30 CA08748), Cycle for Survival, and the Marie-Josée and Henry R. Kravis Center for Molecular Oncology.ReferencesShankaran V, et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 2001;410:1107–1111.Matsushita H, et al. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 2012;482:400–404.Balachandran VP, et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature 2017;551:512–516.Łuksza M, et al. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature 2017;551:517–520.Ethics ApprovalThis study was performed in strict compliance with all institutional ethical regulations and approved by the institutional review boards of Memorial Sloan Kettering Cancer Center (MSK), the Garvan Institute of Medical Research, and the The Johns Hopkins Hospital (JHH). We obtained informed consent from all patients.


Author(s):  
M. S. Bugaeva ◽  
O. I. Bondarev ◽  
N. N. Mikhailova ◽  
L. G. Gorokhova

Introduction. The impact on the body of such factors of the production environment as coal-rock dust and fluorine compounds leads to certain shift s in strict indicators of homeostasis at the system level. Maintaining the relative constancy of the internal environment of the body is provided by the functional consistency of all organs and systems, the leading of which is the liver. Organ repair plays a crucial role in restoring the structure of genetic material and maintaining normal cell viability. When this mechanism is damaged, the compensatory capabilities of the organ are disrupted, homeostasis is disrupted at the cellular and organizational levels, and the development of the main pathological processes is noted.The aim of the study is to compare the morphological mechanisms of maintaining structural homeostasis of the liver in the dynamics of the impact on the body of coal-rock dust and sodium fluoride.Materials and methods. Experimental studies were conducted on adult white male laboratory rats. Features of morphological mechanisms for maintaining structural homeostasis of the liver in the dynamics of exposure to coal-rock dust and sodium fluoride were studied on experimental models of pneumoconiosis and fluoride intoxication. For histological examination in experimental animals, liver sampling was performed after 1, 3, 6, 9, 12 weeks of the experiment.Results. The specificity of morphological changes in the liver depending on the harmful production factor was revealed. It is shown that chronic exposure to coal-rock dust and sodium fluoride is characterized by the development of similar morphological changes in the liver and its vessels from the predominance of the initial compensatory-adaptive to pronounced violations of the stromal and parenchymal components. Long-term inhalation of coal-rock dust at 1–3 weeks of seeding triggers adaptive mechanisms in the liver in the form of increased functional activity of cells, formation of double-core hepatocytes, activation of immunocompetent cells and endotheliocytes, ensuring the preservation of the parenchyma and the general morphostructure of the organ until the 12th week of the experiment. Exposure to sodium fluoride leads to early disruption of liver compensatory mechanisms and the development of dystrophic changes in the parenchyma with the formation of necrosis foci as early as the 6th week of the experiment.Conclusions. The study of mechanisms for compensating the liver structure in conditions of long-term exposure to coal-rock dust and sodium fluoride, as well as processes that indicate their failure, and the timing of their occurrence, is of theoretical and practical importance for developing recommendations for the timely prevention and correction of pathological conditions developing in employees of the aluminum and coal industry.The authors declare no conflict of interests.


Sign in / Sign up

Export Citation Format

Share Document