Sports Related Brain Injury and Neurodegeneration in Athletes

2021 ◽  
Vol 14 ◽  
Author(s):  
Vipin V. Dhote ◽  
Muthu Kumaradoss Mohan Maruga Raja ◽  
Prem Samundre ◽  
Supriya Sharma ◽  
Shraddha Anwikar ◽  
...  

: Sports deserve a special place in human life to impart healthy and refreshing wellbeing. However, sports activities, especially contact sports, renders athlete vulnerable to brain injuries. Athletes participating in a contact sport like boxing, rugby, American football, wrestling, and basketball are exposed to traumatic brain injuries (TBI) or concussions. The acute and chronic nature of these heterogeneous injuries provides a spectrum of dysfunctions that alters the neuronal, musculoskeletal, and behavioral responses of an athlete. Many sports-related brain injuries go unreported, but these head impacts trigger neurometabolic disruptions that contribute to long-term neuronal impairment. The pathophysiology of post-concussion and its underlying mechanisms are undergoing intense research. It also shed light on chronic disorders like Parkinson's disease, Alzheimer's disease, and dementia. In this review, we examined post-concussion neurobehavioral changes, tools for early detection of signs, and their impact on the athlete. Further, we discussed the role of nutritional supplements in ameliorating neuropsychiatric diseases in athletes.

Biochar ◽  
2021 ◽  
Author(s):  
Qian Yang ◽  
Yongjie Wang ◽  
Huan Zhong

AbstractThe transformation of mercury (Hg) into the more toxic and bioaccumulative form methylmercury (MeHg) in soils and sediments can lead to the biomagnification of MeHg through the food chain, which poses ecological and health risks. In the last decade, biochar application, an in situ remediation technique, has been shown to be effective in mitigating the risks from Hg in soils and sediments. However, uncertainties associated with biochar use and its underlying mechanisms remain. Here, we summarize recent studies on the effects and advantages of biochar amendment related to Hg biogeochemistry and its bioavailability in soils and sediments and systematically analyze the progress made in understanding the underlying mechanisms responsible for reductions in Hg bioaccumulation. The existing literature indicates (1) that biochar application decreases the mobility of inorganic Hg in soils and sediments and (2) that biochar can reduce the bioavailability of MeHg and its accumulation in crops but has a complex effect on net MeHg production. In this review, two main mechanisms, a direct mechanism (e.g., Hg-biochar binding) and an indirect mechanism (e.g., biochar-impacted sulfur cycling and thus Hg-soil binding), that explain the reduction in Hg bioavailability by biochar amendment based on the interactions among biochar, soil and Hg under redox conditions are highlighted. Furthermore, the existing problems with the use of biochar to treat Hg-contaminated soils and sediments, such as the appropriate dose and the long-term effectiveness of biochar, are discussed. Further research involving laboratory tests and field applications is necessary to obtain a mechanistic understanding of the role of biochar in reducing Hg bioavailability in diverse soil types under varying redox conditions and to develop completely green and sustainable biochar-based functional materials for mitigating Hg-related health risks.


2021 ◽  
Vol 14 ◽  
Author(s):  
Supriya Mishra ◽  
Vikram Jeet Singh ◽  
Pooja A Chawla ◽  
Viney Chawla

Background: Neurodegenerative disorders belong to different classes of progressive/chronic conditions that affect the peripheral/central nervous system. It has been shown through studies that athletes who play sports involving repeated head trauma and sub-concussive impacts are more likely to experience neurological impairments and neurodegenerative disorders in the long run. Aims: The aim of the current narrative review article is to provide a summary of various nutraceuticals that offer promise in the prevention or management of sports-related injuries, especially concussions and mild traumatic brain injuries. Methods: This article reviews the various potential nutraceutical agents and their possible mechanisms in providing a beneficial effect in the injury recovery process. A thorough survey of the literature was carried out in the relevant databases to identify studies published in recent years. In the present article, we have also highlighted the major neurological disorders along with the associated nutraceutical(s) therapy in the management of disorders. Results: The exact pathological mechanism behind neurodegenerative conditions is complex as well as idiopathic. However, mitochondrial dysfunction, oxidative stress as well as intracellular calcium overload are some common reasons responsible for the progression of these neurodegenerative disorders. Owing to the multifaceted effects of nutraceuticals (complementary medicine), these supplements have gained importance as neuroprotective. These diet-based approaches inhibit different pathways in a physiological manner without eliciting adverse effects. Food habits and lifestyle of an individual also affect neurodegeneration. Conclusion: Studies have shown nutraceuticals (such as resveratrol, omega-3-fatty acids) to be efficacious in terms of their neuroprotection against several neurodegenerative disorders and to be used as supplements in the management of traumatic brain injuries. Protection prior to injuries is needed since concussions or sub-concussive impacts may trigger several pathophysiological responses or cascades that can lead to long-term complications associated with CNS. Thus, the use of nutraceuticals as prophylactic treatment for neurological interventions has been proposed.


2020 ◽  
Author(s):  
Leon Teo ◽  
Anthony G. Boghdadi ◽  
Jihane Homman-Ludiye ◽  
Iñaki Carril-Mundiñano ◽  
William C. Kwan ◽  
...  

AbstractInfants and adults respond differently to brain injuries. Specifically, improved neuronal sparing along with reduced astrogliosis and glial scarring often observed earlier in life, likely contributes to improved long-term outcomes. Understanding the underlying mechanisms could enable the recapitulation of neuroprotective effects, observed in infants, to benefit adult patients after brain injuries. We reveal that in primates, Eph/ ephrin signaling contributes to age-dependent reactive astrocyte behavior. Ephrin-A5 expression on astrocytes was more protracted in adults, whereas ephrin-A1 was associated only with infant astrocytes. Furthermore, ephrin-A5 exacerbated major hallmarks of astrocyte reactivity via EphA2 and EphA4 receptors, which was subsequently alleviated by ephrin-A1. Rather than suppressing reactivity, ephrin-A1 signaling shifted astrocytes towards GAP43+ neuroprotection, accounting for improved neuronal sparing in infants. Reintroducing ephrin-A1 after middle-aged ischemic stroke significantly attenuated glial scarring, improved neuronal sparing and preserved circuitry. Therefore, beneficial infant mechanisms can be recapitulated in adults to improve outcomes after CNS injuries.


2021 ◽  
Vol 10 (15) ◽  
pp. 3441
Author(s):  
Hashir Ali Awan ◽  
Mufaddal Najmuddin Diwan ◽  
Alifiya Aamir ◽  
Muneeza Ali ◽  
Massimo Di Giannantonio ◽  
...  

The second year of the COVID-19 (coronavirus disease) pandemic has seen the need to identify and assess the long-term consequences of a SARS-CoV-2 infection on an individual’s overall wellbeing, including adequate cognitive functioning. ‘Cognitive COVID’ is an informal term coined to interchangeably refer to acute changes in cognition during COVID-19 and/or cognitive sequelae with various deficits following the infection. These may manifest as altered levels of consciousness, encephalopathy-like symptoms, delirium, and loss of various memory domains. Dysexecutive syndrome is a peculiar manifestation of ‘Cognitive COVID’ as well. In the previous major outbreaks of viruses like SARS-CoV, MERS-CoV and Influenza. There have been attempts to understand the underlying mechanisms describing the causality of similar symptoms following SARS-CoV-2 infection. This review, therefore, is attempting to highlight the current understanding of the various direct and indirect mechanisms, focusing on the role of neurotropism of SARS-CoV-2, the general pro-inflammatory state, and the pandemic-associated psychosocial stressors in the causality of ‘Cognitive COVID.’ Neurotropism is associated with various mechanisms including retrograde neuronal transmission via olfactory pathway, a general hematogenous spread, and the virus using immune cells as vectors. The high amounts of inflammation caused by COVID-19, compounded with potential intubation, are associated with a deleterious effect on the cognition as well. Finally, the pandemic’s unique psychosocial impact has raised alarm due to its possible effect on cognition. Furthermore, with surfacing reports of post-COVID-vaccination cognitive impairments after vaccines containing mRNA encoding for spike glycoprotein of SARS-CoV-2, we hypothesize their causality and ways to mitigate the risk. The potential impact on the quality of life of an individual and the fact that even a minor proportion of COVID-19 cases developing cognitive impairment could be a significant burden on already overwhelmed healthcare systems across the world make it vital to gather further evidence regarding the prevalence, presentation, correlations, and causality of these events and reevaluate our approach to accommodate early identification, management, and rehabilitation of patients exhibiting cognitive symptoms.


2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
Stamatis Gregoriou ◽  
Dafni Papafragkaki ◽  
George Kontochristopoulos ◽  
Eustathios Rallis ◽  
Dimitrios Kalogeromitros ◽  
...  

Alopecia areata, a disease of the hair follicles with multifactorial etiology and a strong component of autoimmune origin, has been extensively studied as far as the role of several cytokines is concerned. So far, IFN-, interleukins, TNF-, are cytokines that are well known to play a major role in the pathogenesis of the disease, while several studies have shown that many more pathways exist. Among them, MIG, IP-10, BAFF, HLA antigens, MIG, as well as stress hormones are implicated in disease onset and activity. Within the scope of this paper, the authors attempt to shed light upon the complexity of alopecia areata underlying mechanisms and indicate pathways that may suggest future treatments.


2015 ◽  
Vol 26 (2-4) ◽  
pp. 281-293
Author(s):  
Marieke Liem ◽  
Jan Maarten Elbers

In recent decades, the number of long-term detainees held worldwide has increased significantly. Academics and policy makers have begun to challenge the widespread use and effectiveness of such severe sentences, however. This article aims to shed light on the role of human rights in imposing and executing long-term custodial sentences. There appears to be tension between ensuring that human rights are respected and provision of security through the incapacitation of offenders. This tension can only be understood properly in the context of contemporary risk-management associated with increased punitiveness.


2017 ◽  
Vol 284 (1855) ◽  
pp. 20170449 ◽  
Author(s):  
Chloe Bracis ◽  
Thomas Mueller

One of the key questions regarding the underlying mechanisms of mammalian land migrations is how animals select where to go. Most studies assume perception of resources as the navigational mechanism. The possible role of memory that would allow forecasting conditions at distant locations and times based on information about environmental conditions from previous years has been little studied. We study migrating zebra in Botswana using an individual-based simulation model, where perceptually guided individuals use currently sensed resources at different perceptual ranges, while memory-guided individuals use long-term averages of past resources to forecast future conditions. We compare simulated individuals guided by perception or memory on resource landscapes of remotely sensed vegetation data to trajectories of GPS-tagged zebras. Our results show that memory provides a clear signal that best directs migrants to their destination compared to perception at even the largest perceptual ranges. Zebras modelled with memory arrived two to four times, or up to 100 km, closer to the migration destination than those using perception. We suggest that memory in addition to perception is important for directing ungulate migration. Furthermore, our findings are important for the conservation of migratory mammals, as memory informing direction suggests migration routes could be relatively inflexible.


2019 ◽  
Author(s):  
K. Kreger ◽  
B. Shaban ◽  
E. Wapstra ◽  
C.P. Burridge

AbstractPhylogeography provides a means to understand mechanisms that shaped the distribution and abundance of species, including the role of past climate change. While concordant phylogeographic relationships across diverse taxa suggest shared underlying mechanisms (“phylogeographic parallelism”), it is also possible that similar patterns are the product of different mechanisms (“phylogeographic convergence”), reflecting variation among taxa in factors such as environmental tolerances, life histories, and vagility. Hence, phylogeographic concordance among closely related and ecologically similar species can yield a more confident understanding of the past mechanisms which shaped their distribution and abundance. This study documented mitochondrial and nuclear phylogeographic patterns in the ectotherm skink, Niveoscincus metallicus, which occupies historically glaciated regions of Tasmania, and contrasted these with the closely related and broadly sympatric N. ocellatus. Major phylogeographic breaks were similar in location between the two species, and indicative of isolation caused by retreat from high elevation areas during glaciations, but with long-term persistence at multiple low elevation sites. Hence, Pleistocene glacial refugia were altitudinal rather than latitudinal, a pattern mirrored in other temperate Southern Hemisphere taxa. This study also examined phylogeographic patterns across the intermittently inundated Bassian Isthmus between mainland Australia and the island of Tasmania, and revealed that structuring is similarly maintained when populations were physically isolated during interglacial rather than glacial stages.


2021 ◽  
Vol 2 (4) ◽  
pp. 64-70
Author(s):  
Vladimir V. Borisov ◽  

The clinical lecture is a continuation of our report on antioxidants published in one of the preceding issues of the magazine. In the current context of COVID-19 epidemic, the efforts to struggle for preservation of human life and health using all possible sanitary and anti-epidemic (preventive) measures, as well as advanced diagnostic and therapeutic tools, imply fertility preservation in the population together with positive solutions to national demographic challenges in the long term. Testicles are one of the reservoirs for the virus in the male body. This is indirectly confirmed by the sex hormone level alterations in COVID-19 survivors compared to healthy people. Oxidative stress associated with impaired fertility results from antioxidant and trace mineral deficiency. The role of trace minerals, zinc and selenium, in these processes together with possible approaches to adjustment of their levels in the context of COVID-19 pandemic are discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document