scholarly journals Modeling Sliding Friction of a Multiscale Wavy Surface over a Viscoelastic Foundation Taking into Account Adhesion

Lubricants ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 13 ◽  
Author(s):  
Yulia Makhovskaya

A model for calculating the hysteretic friction force for a multilevel wavy surface sliding in dry conditions over the surface of a viscoelastic foundation is suggested, taking into account adhesion force acting in the direction normal to the contact surface. At each scale level, the contact problem for a 3D periodic wavy indenter is solved by using the strip method to reduce the problem to 2D formulation in a strip. Different regimes of contact and adhesion interaction are possible in each strip, including partial and saturated contact. The friction force is calculated as a sum of two terms. The first term is due to hysteretic losses occurring when asperities of this scale level cyclically deform the viscoelastic foundation during sliding. The second term is the law of friction determined from the solution of the contact problem at the inferior scale level. For the case of a two-level wavy surface, the contribution of both levels into the total friction force is calculated and analyzed depending on the sliding velocity and specific energy of adhesion of the contacting surfaces.

2012 ◽  
Vol 268-270 ◽  
pp. 1134-1142 ◽  
Author(s):  
Xiao Jing Yang ◽  
Sheng Peng Zhan ◽  
Yi Lin Chi

Contact surface of nanoscale sliding friction represent some new features that are different from the macro scale sliding friction, which need to seek new analysis methods. Molecular dynamics simulation is an effective method to describe microscopic phenomena. Therefore, Molecular dynamics method was used to study mechanical behavior of contact surface of nanoscale sliding friction. A molecular dynamics model of hemisphere sphere sliding on rectangular solid plane was built. State change of the micro contact area and friction force variation in the process of sliding friction were observed and analyzed after solution and simulation. The results show that, at the beginning position of the sliding, with different contact depth, contact action region of hemisphere and plane generated the atoms displacement, re-arranged and close-packed accumulation is also different. The deeper the contact depth is, the greater the atoms close-packed accumulation is, and the greater the contact deformation is. In the process of sliding friction, the contact surface of the basal body has produced lattice destruction, surface upheaval and silicon atoms close-packed accumulation, and then formed furrow scratches. At the same time the silicon atoms of the hemisphere generated atomic migration obviously and adhered on the basal body surface. The top of the hemisphere was torn and peeled, which resulted in wear. The deeper contact depth is, the more loss of the material of the hemisphere is, and wear become heavier. The curve of friction force and sliding displacement in different contact depths shows that the deeper contact depth is, the greater friction force is. The friction force increases quickly at the beginning of the sliding. Then the friction force remains steady relatively at stable sliding phase. In subsequent sliding process, due to hemisphere was worn and the original contact surface changed in size, shape and configuration state, friction force decreases obviously. Besides, in process of sliding friction, due to stick-slip effect, friction force appears obviously fluctuations. Moreover, if the sliding speed is large the changes of sliding speed have less effect on friction force when the nanoscale sphere sliding on the plane at the different speeds.


2006 ◽  
Vol 113 ◽  
pp. 334-338
Author(s):  
Z. Dreija ◽  
O. Liniņš ◽  
Fr. Sudnieks ◽  
N. Mozga

The present work deals with the computation of surface stresses and deformation in the presence of friction. The evaluation of the elastic-plastic contact is analyzed revealing three distinct stages that range from fully elastic through elastic-plastic to fully plastic contact interface. Several factors of sliding friction model are discussed: surface roughness, mechanical properties and contact load and areas that have strong effect on the friction force. The critical interference that marks the transition from elastic to elastic- plastic and plastic deformation is found out and its connection with plasticity index. A finite element program for determination contact analysis of the assembled details and due to details of deformation that arose a normal and tangencial stress is used.


2008 ◽  
Vol 373-374 ◽  
pp. 472-475 ◽  
Author(s):  
C.G. Sun ◽  
Hui Chen Zhang

In this work, the self-assembled monolayers of γ-aminopropyltrimethoxysilane and octadecyltrichlorosilane were prepared on titanium films, radiated and solidified by ultraviolet radiation/ozone photochemical process. The characterization and friction properties of titanium film, APS SAMs, OTS SAMs and the radiated APS SAMs, OTS SAMs were explored by atomic force microscopy and friction force microscopy. The effects of functional groups, sliding velocity, load and ultraviolet radiation/ozone photochemical process on friction properties of SAMs were analyzed. The experimental results show that the titanium film coated with SAMs, especially under ultraviolet radiation/ozone, is exhibited with a good friction property. The friction property of APS SAMs is better than OTS SAMs under or no ultraviolet radiation/ozone. The friction force increases with the increasing of sliding velocity and decreases with the increasing of load.


Author(s):  
K. Miyoshi ◽  
K. W. Street ◽  
R. L. Vander Wal ◽  
R. Andrews ◽  
David Jacques ◽  
...  

To evaluate recently developed aligned multiwalled carbon nanotubes (MWNTs) and dispersed MWNTs for solid lubrication applications, unidirectional sliding friction experiments were conducted with 440C stainless steel balls and hemispherical alumina-yttria stabilized zirconia pins in sliding contact with the MWNTs deposited on quartz disks in air and in vacuum. The results indicate that MWNTs have superior solid lubrication friction properties and endurance lives in air and vacuum under dry conditions. The coefficient of friction of the dispersed MWNTs is close to 0.05 and 0.009 in air and in vacuum, respectively, showing good dry lubricating ability. The wear life of MWNTs exceeds 1 million passes in both air and vacuum showing good durability. In general, the low coefficient of friction can be attributed to the combination of the transferred, agglomerated patches of MWNTs on the counterpart ball or pin surfaces and the presence of tubular MWNTs at interfaces.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1428
Author(s):  
Shengguang Zhu ◽  
Liyong Ni

Previous research on friction calculation models has mainly focused on static friction, whereas sliding friction calculation models are rarely reported. In this paper, a novel sliding friction model for realizing a dry spherical flat contact with a roughness effect at the micro/nano scale is proposed. This model yields the sliding friction by the change in the periodic substrate potential, adopts the basic assumptions of the Greenwood–Williamson random contact model about asperities, and assumes that the contact area between a rigid sphere and a nominal rough flat satisfies the condition of interfacial friction. It subsequently employs a statistical method to determine the total sliding friction force, and finally, the feasibility of this model presented is verified by atomic force microscopy friction experiments. The comparison results show that the deviations of the sliding friction force and coefficient between the theoretical calculated values and the experimental values are in a relatively acceptable range for the samples with a small plasticity index (Ψ ≤ 1).


2017 ◽  
Vol 739 ◽  
pp. 18-22
Author(s):  
Laura Elbourne-Binns ◽  
Juan Carlos Baena ◽  
Ling Yin ◽  
Zhong Xiao Peng

An experimental investigation was performed to study the wear of a promising dental ceramic, i.e., machinable lithium disilicate glass ceramic, under lubrication conditions, in particular, to examine effects of the surface finish and applied load on wear. Our previous work has shown that a fine finish in a dry condition did not necessarily translate to the lowest wear volume due to changes in the dominant wear mechanisms. This study tested the ceramic specimens with four average surface roughness values of Sa = 143 nm, 217 nm, 353 nm, and 692 nm on a reciprocating sliding friction rig against alumina balls with two applied forces of 5 N and 25 N in a bath of distilled water. Comparing with the results obtained in the dry conditions, this study shows that surface roughness of approximately 200 nm may be suitable for surface preparation of crowns made from the material in the wet and dry wear conditions in the oral environment.


2021 ◽  
Vol 57 (1) ◽  
pp. 015009
Author(s):  
Rod Cross

Abstract Oblique angle collisions of two penny coins on a smooth, horizontal surface were filmed with a video camera to investigate the physics of the collision process. If one of the coins is initially at rest, then the two coins emerge approximately at right angles, as commonly observed in billiard ball collisions and in puck collisions on an air table. The coins actually emerged at an angle less than 90 degrees due to friction between the coins, which also resulted in both coins rotating after the collision. At glancing angles, the friction force was due to sliding friction. At other angles of incidence the coins gripped each other and the friction force was then due to static friction.


1995 ◽  
Vol 117 (4) ◽  
pp. 569-574 ◽  
Author(s):  
Yasuhisa Ando ◽  
Yuichi Ishikawa ◽  
Tokio Kitahara

The friction coefficient and adhesion force between steel balls and flat test pieces were measured during friction under low normal load in order to examine the tribological characteristics. First, the friction coefficients were measured under a constant normal load of 0.8 to 2350 μN, and the adhesion forces were measured before and after each friction. The result showed that the friction coefficient was highest at low normal loads, while the friction force divided by the sum of the normal load and the mean adhesion force was almost constant over the whole range of loads. Second, when the normal load was reduced gradually during friction, friction still acted when the normal load became negative and a pulling off force was applied to the surface. Thus an adhesion force acts during friction and this adhesion force affects the friction force in the same way as the normal load.


Wear ◽  
2011 ◽  
Vol 270 (9-10) ◽  
pp. 628-633 ◽  
Author(s):  
Irina Goryacheva ◽  
Yulia Makhovskaya

Sign in / Sign up

Export Citation Format

Share Document