scholarly journals On the Relation between Friction Increase and Grease Thickener Entraining on a Border of Mixed EHL Lubrication

Lubricants ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 12
Author(s):  
Tomas Zapletal ◽  
Petr Sperka ◽  
Ivan Krupka ◽  
Martin Hartl

This paper deals with an experimental study of film thickness and friction of commercial-grade grease and its base oil in a highly loaded contact. In-situ measurements were conducted for two surface textures on a ball-on-disc optical tribometer at the border of mixed lubrication. At high speeds, the film thickness and the friction of grease correspond with the base oil, while, the thickener enters the contact area and locally affects the film thickness and friction at low speeds. It was found out that the thickener starts to enter the contact area approximately at the same speed when the base oil friction increases on Stribeck curve but without direct solid to solid contact. It indicates that both effects can have the same origin. Change of lubricant flow in contact inlet area was discussed as a possible explanation.

2017 ◽  
Vol 739 ◽  
pp. 56-62
Author(s):  
Koki Fukuta ◽  
Satoru Maegawa ◽  
Fumihiro Itoigawa ◽  
Takashi Nakamura

In this paper, an application of the surface plasmon resonance (SPR) method to real-time and in-situ measurements of changes in adsorption film thickness, e.g., fatty acid adsorbed films, is presented. As discussed in the previous study, the high sensitivity and overall simplicity of its optical system make the SPR method advantageous for monitoring lubricant film thickness. In order to demonstrate the high sensitivity of the SPR method, in-situ and real-time adsorption film growth processes of stearic acid (additives) in hexadecane (base oil) were monitored using the Otto configuration. Based on a comparison between experimental and model calculation results, changes in the adsorption film thickness during a series of different contact tests were measured.


Lubricants ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 80
Author(s):  
Seyedmohammad Vafaei ◽  
Dennis Fischer ◽  
Max Jopen ◽  
Georg Jacobs ◽  
Florian König ◽  
...  

One commonly used lubricant in rolling bearings is grease, which consists of base oil, thickener and small amounts of additives. Commercial greases are mostly produced from petrochemical base oil and thickener. Recently, the development of base oils from renewable resources have been significantly focused on in the lubricant industry. However, to produce an entirely bio-based grease, the thickener must also be produced from renewable materials. Therefore, this work presents the design and evaluation of three different bio-based polymer thickener systems. Tribological tests are performed to characterize lubrication properties of developed bio-based greases. The effect of thickener type on film thickness and friction behavior of the produced bio-based greases is evaluated on a ball-on-disc tribometer. Moreover, the results are compared to a commercial petrochemical grease chosen as benchmark.


Friction ◽  
2020 ◽  
Author(s):  
Hongxing Wu ◽  
Liping Wang ◽  
Guangneng Dong

Abstract The lubrication effectiveness of MoS2 nanoparticles as an oil additive remains unclear, restricting its application in industry to reduce friction. The goal of this work was to explore the lubrication mechanism of MoS2 nanoparticles as an oil additive. In this study, the oil film thickness behaviors of MoS2 nanoparticles in poly-alpha olefin (PAO4) base oil, PAO4 with 3 wt% dispersant (polyisobutyleneamine succinimide, PIBS), and 0W20 engine oil were investigated using an elastohydrodynamic lubrication (EHL) testing machine. Following the EHL tests, the flow patterns around the contact area and the tribofilm covering rate on contact area were studied using optical microscopy to understand the lubrication mechanism. The results indicate that both the dispersant and nanoparticle aggregation significantly affected the oil film thickness. The expected oil film thickness increase in the case of 0.1 wt% MoS2 in PAO4 base oil was obtained, with an increase from 30 to 60 nm over 15 min at a velocity of 50 mm/s. Flow pattern analysis revealed the formation of particle aggregation on the rolling path when lubricated with 0.1 wt% MoS2, which is associated with a tribofilm coverage rate of 41.5% on the contact area. However, an oil film thickness increase and particle aggregation were not observed during the tests with 0.1 wt% MoS2 blended with 3 wt% PIBS as the dispersant in PAO4 base oil, and for 0.75 wt% MoS2 in 0W20 engine oil. The results suggest that nanoparticles responsible for tribofilm formation originated from aggregates, but not the well-dispersed nanoparticles in point contact. This understanding should aid the advancement of novel lubricant additive design.


Lubricants ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 82 ◽  
Author(s):  
David Gonçalves ◽  
Armando Campos ◽  
Jorge Seabra

The film thickness of a ball-on-disc contact lubricated with four greases of different formulations was measured under different operating conditions until starvation. Two polymer-thickened greases and two lithium-thickened greases, formulated with base oils of different nature and/or viscosity, were tested. The central film thickness was measured under constant operating conditions (load, temperature, slide-to-roll ratio) varying only the entrainment speed. In a separate test, the film thickness was measured over time with all operating conditions set to constant. Pictures of the film thickness profile across the contact area were also registered. The results were compared with the fully flooded results. The coefficient of friction (COF) was measured in a ball-on-disc contact under equal operating conditions and the results were correlated with the film thickness findings. The different grease formulations and the influence of the operating conditions on the film thickness and COF were discussed. The polymer thickened the greases, promoting lower COF and higher film thickness, especially when there is thickener material crossing the contact which happens quite often for these greases.


2015 ◽  
Vol 90 ◽  
pp. 435-444 ◽  
Author(s):  
David Gonçalves ◽  
Beatriz Graça ◽  
Armando V. Campos ◽  
J. Seabra ◽  
Johan Leckner ◽  
...  
Keyword(s):  

1995 ◽  
Vol 397 ◽  
Author(s):  
M. Barth ◽  
J. Knobloch ◽  
P. Hess

ABSTRACTThe growth of high quality amorphous hydrogenated semiconductor films was explored with different in situ spectroscopic methods. Nucleation of ArF laser-induced CVD of a-Ge:H on different substrates was investigated by real time ellipsometry, whereas the F2 laser (157nm) deposition of a-Si:H was monitored by FTIR transmission spectroscopy. The ellipsometric studies reveal a significant influence of the substrate surface on the nucleation stage, which in fact determines the electronic and mechanical properties of the bulk material. Coalescence of initial clusters occurs at a thickness of 16 Å for atomically smooth hydrogen-terminated c-Si substrates, whereas on native oxide covered c-Si substrates the bulk volume void fractions are not reached until 35 Å film thickness. For the first time we present a series of IR transmission spectra with monolayer resolution of the initial growth of a-Si:H. Hereby the film thickness was measured simultaneously using a quartz crystal microbalance with corresponding sensitivity. The results give evidence for cluster formation with a coalescence radius of about 20 Å. Difference spectra calculated for layers at different depths with definite thickness reveal that the hydrogen-rich interface layer stays at the substrate surface and does not move with the surface of the growing film. The decrease of the Urbach energy switching from native oxide to H-terminated substrates suggests a strong influence of the interface morphology on the bulk material quality.


Author(s):  
Eduardo de la Guerra Ochoa ◽  
Javier Echávarri Otero ◽  
Enrique Chacón Tanarro ◽  
Benito del Río López

This article presents a thermal resistances-based approach for solving the thermal-elastohydrodynamic lubrication problem in point contact, taking the lubricant rheology into account. The friction coefficient in the contact is estimated, along with the distribution of both film thickness and temperature. A commercial tribometer is used in order to measure the friction coefficient at a ball-on-disc point contact lubricated with a polyalphaolefin base. These data and other experimental results available in the bibliography are compared to those obtained by using the proposed methodology, and thermal effects are analysed. The new approach shows good accuracy for predicting the friction coefficient and requires less computational cost than full thermal-elastohydrodynamic simulations.


2015 ◽  
Vol 642 ◽  
pp. 212-216
Author(s):  
Yi Haung ◽  
Chin Chung Wei

Ball screw is a high-precision and high performance linear drive of mechanical elements. The frictional heat of internal components what is very significant impact for platform transmission in high speed and the high axial load and causes the thermal expansion of element. In this research , the influence of different greases on ball screw is investigated in thermal rising of nut and driving torque in high speed and high axial load. A vertical motion platform was used for driving performance test. Thermal rising of nut of ball screw and the variance of transmission torque whose lubricated by high viscosity base oil grease is significant larger than the lower one. High viscosity grease is not easy to carry out the friction heat generated at ball and raceway contact area due to the bad flowing properties. It also has more serious wear occurred at contact area and high friction force, whose causes the large variance of transmission torque.


Author(s):  
Fadi Ali ◽  
Ivan Křupka ◽  
Martin Hartl

This study presents experimental results on the effect of out-of-contact lubricant channeling on the tribological performance of nonconformal contacts under starved lubrication. Channeling of lubricant was carried out by adding a slider with a limited slot for scraping the displaced lubricant on one of mating surfaces (ball). Thus, the scraped lubricant is forced to flow back into the depleted track through the limited slot resulting in robust replenishment. The measurements have been conducted using optical tribometer (ball-on-disc) equipped with a digital camera and torque sensor. The effect of lubricant channeling was compared to the original contact condition by means of measuring friction and film thickness. The results show that the out-of-contact lubricant channeling leads to a significant enhancement of film thickness and friction reduction under starved conditions. Indeed, the starved elastohydrodynamic lubrication contacts transformed to the fully flooded regime after introducing the flow reconditioning. Moreover, the film thickness decay over time, which is common with starved elastohydrodynamic lubrication contacts, has not been observed in the case of lubricant channeling. However, the beneficial effect of lubricant channeling diminishes as the original contact condition tends to the fully flooded regime. The results of this study can be easily implemented in practical applications such as radial and thrust rolling-element bearings.


1991 ◽  
Vol 231 ◽  
Author(s):  
Yi Li ◽  
K. Baberschke

Abstract6 to 80 Å thin Ni(111) films were prepared on smooth and rough W(110) substrates in UHV and characterized by LEED and Auger spectroscopies. The measurements of the magnetic properties were carried out in situ by ferromagnetic resonance at 9 GHz between 300 and 600 K. We found that the effective anisotropies, which consist of surface, crystal, and stress induced anisotropy, increase with decreasing film thickness and temperature. The roughness of the substrate results in the drastic decrease of the effective anisotropy. This is attributed to the change of the surface structure and the stress within the Ni films. Furthermore we found that the Curie temperature Tc and the critical exponent β of Ni films on the smooth and rough substrates show no change.


Sign in / Sign up

Export Citation Format

Share Document