scholarly journals Investigation on Synthesis, Stability, and Thermal Conductivity Properties of Water-Based SnO2/Reduced Graphene Oxide Nanofluids

Materials ◽  
2017 ◽  
Vol 11 (1) ◽  
pp. 38 ◽  
Author(s):  
Xiaofen Yu ◽  
Qibai Wu ◽  
Haiyan Zhang ◽  
Guoxun Zeng ◽  
Wenwu Li ◽  
...  
2016 ◽  
Vol 51 (22) ◽  
pp. 10104-10115 ◽  
Author(s):  
Shanxing Wang ◽  
Yunyong Li ◽  
Haiyan Zhang ◽  
Yingxi Lin ◽  
Zhenghui Li ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1052
Author(s):  
Wu-Jian Long ◽  
Can Lin ◽  
Xiao-Wen Tan ◽  
Jie-Lin Tao ◽  
Tao-Hua Ye ◽  
...  

Development of low thermal conductivity and high strength building materials is an emerging strategy to solve the heavy energy consumption of buildings. This study develops sustainable alkali activated materials (AAMs) for structural members from waste expanded polystyrene (EPS) beads and reduced graphene oxide (rGO) to simultaneously meet the thermal insulation and mechanical requirements of building energy conservation. It was found that the thermal conductivity of AAMs with 80 vol.% EPS and 0.04 wt.% rGO (E8–G4) decreased by 74% compared to the AAMs without EPS and rGO (E0). The 28-day compressive and flexural strengths of E8–G4 increased by 29.8% and 26.5% with the addition of 80 vol.% EPS and 0.04 wt.% rGO, compared to the sample with 80 vol.% EPS without rGO (E8). In terms of compressive strength, thermal conductivity, and cost, the efficiency index of E8–G4 was higher than those of other materials. A building model made from AAMs was designed using building information modeling (BIM) tools to simulate energy consumption, and 31.78% of total energy consumption (including heating and cooling) was saved in the building operation period in Harbin City, China. Hence, AAMs made of waste EPS beads and rGO can realize the structural and functional integrated application in the future.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Joanna Wilk ◽  
Robert Smusz ◽  
Ryszard Filip ◽  
Grzegorz Chmiel ◽  
Tomasz Bednarczyk

Abstract Graphene oxide/rubber composites were experimentally investigated for obtaining their thermal properties. Three kinds of the composite matrix material have been used: NBR, HNBR and FKM. The reduced graphene oxide in the form of crumped flakes has been applied as the filler influencing on thermal conductivity of the composites. Two values of graphene oxide weight concentration have been taken into account in the investigation. Thermal conductivity of the composites and basic matrix has been measured by the professional apparatus with the use of the guarded heat plate method. Before measurements the preliminary tests using the simplified comparative method have been performed. The results obtained, both from preliminary tests and using the guarded heat plate method, show an increase in thermal conductivity with increasing the reduced graphene oxide content in the composite. The experimental investigation allowed to determine not only the increase in thermal properties of graphene oxide/rubber composites compared to the basic matrix, but also the absolute values of thermal conductivities. Additionally, the SEM analysis showed that the tested composite samples contain agglomerates of the rGO nanoparticles. The occurrence of agglomerates could affect the composite thermal properties. This was noticed in the comparatively measurements of the temperature of different composites during the heating of samples tested. The maximum enhancement of thermal conductivity obtained was about 11% compared to the basis matrix of the composites tested.


2020 ◽  
Vol 34 (25) ◽  
pp. 2050265 ◽  
Author(s):  
Ke Wang ◽  
Zhimin Zhou ◽  
Yuehui Wang

In this paper, waterborne polyurethane (WPU) conductive films incorporated with reduced graphene oxide (RGO) as conductive fillers were prepared by solution blending and tape casting method. The electrical conductivity, thermal conductivity and microstructures of the composite films were systematically investigated. The experimental results demonstrate that the electrical conductivity and thermal conductivity of the RGO–WPU composite films first increased then decreased with the increase of the RGO content. The resistivity of composite film with 7% RGO reaches to the smallest that is about [Formula: see text], and the thermal conductivity of the composite film with 7% graphene was about 0.29 W.m.K[Formula: see text], which an increase of 70% compared with pure WPU. The electrical conductivity of the composite film decreased with the increase of the original concentration of WPU solution and thickness of the composite film. As film heater, the composite film displayed effective and rapid heating at low input voltages owing to the good conductivity. With an input voltage was in the range of 10–24 V, the film took less than 30s to reach a steady-state temperature, demonstrating the fast response of the composite film heater and suitable for applications in the field of the fast temperature switching with low input voltages as flexible electrothermal heater.


2019 ◽  
Vol 821 ◽  
pp. 39-46
Author(s):  
Peter Nyanor ◽  
Omayma A. El Kady ◽  
Atef S. Hamada ◽  
Koichi Nakamura ◽  
Mohsen A. Hassan

The effective properties of metal matrix composites (MMCs) depend on matrix material and reinforcement property specifications as well as bonding at interphase. The use of numerical methods such as finite element (FE) and mean field homogenization (MFH) can assist in predicting MMC properties thus reducing time and cost of optimizing composite properties through experiments. In the present work, a multiscale representative volume element (RVE) of the microstructure of reduced graphene oxide (rGO) reinforced Aluminium (Al) matrix composite (rGO/Al) is created in MSC DigiMat and analysed using Abaqus software. The effect of porosity and rGO reinforcement on thermal conductivity and strength of the rGO/Al composites is studied. The variation in thermal conductivity between FE-RVE and experimental data is a maximum of 2.2% and a minimum of 0.07% for rGO reinforcement of 1 wt.% and 3 wt.% respectively. The results show good agreement between FE-RVE simulation, MFH and experimental data. This approach can provide an efficient technique for selecting matrix and reinforcement phase properties for MMC fabrication. Keywords: Al/rGO composite, Multiscale finite element-representative volume, Thermal and mechanical properties


Sign in / Sign up

Export Citation Format

Share Document