scholarly journals Influence of Activator Na2O Concentration on Residual Strengths of Alkali-Activated Slag Mortar upon Exposure to Elevated Temperatures

Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1296 ◽  
Author(s):  
Tai Tran ◽  
Hyug-Moon Kwon

The mechanical strength variation of ambient cured Alkali-activated mortar (AAS) upon exposure to elevated temperatures from 200 to 1200 °C was studied in this article. Slag was activated by the combination of sodium silicate liquid (Na2SiO3) and sodium hydroxide (NaOH) with different Na2O concentrations of 4%, 6%, 8%, and 10% by slag weight. Mechanical properties comprising compressive strength, flexural strength, and tensile strength before and after exposure were measured. Thermogravimetric analysis (Thermogravimetric analysis (TGA) and Derivative thermogravimetric (DTG)), X-ray diffraction (XRD), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDS) were also used for strength alteration explanation. The results indicated that Na2O concentration influence on strength variation of AAS mortar was observed clearly at temperature range from ambient temperature to 200 °C. The melting alteration of AAS mortar after exposed to 1200 °C was highly dependent on concentrations of Na2O.

CORROSION ◽  
10.5006/3881 ◽  
2021 ◽  
Author(s):  
Zachary Karmiol ◽  
Dev Chidambaram

This work investigates the oxidation of a nickel based superalloy, namely Alloy X, in water at elevated temperatures: subcritical water at 261°C and 27 MPa, the transition between subcritical and supercritical water at 374°C and 27 MPa, and supercritical water at 380°C and 27 MPa for 100 hours. The morphology of the sample surfaces were studied using scanning electron microscopy coupled with focused ion beam milling, and the surface chemistry was investigated using X-ray diffraction, Raman spectroscopy, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy before and after exposure studies. Surfaces of all samples were identified to comprise of a ferrite spinel containing aluminum.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Katalin Orosz ◽  
Abeer Humad ◽  
Hans Hedlund ◽  
Andrzej Cwirzen

Deformations of alkali-activated slag concrete (AASC) with high MgO and Al2O3 content, subjected to variable curing temperature were studied. Sodium silicate and sodium carbonate were used as alkali activators. The obtained results showed development of deformations consisting of both shrinkage and expansion. Shrinkage appeared not to be affected by the activator type, while the expansion developed after the cooling down phase in stabilized isothermal conditions and did not stop within the duration of the tests. X-ray diffraction analysis performed shortly after the cooling down phase indicated the formation of crystalline hydrotalcite, which was associated with the observed expansion. A mixture with a higher amount of sodium silicate showed less expansion, likely due to the accelerated hydration and geopolymerization leading to the increased stiffness of the binder matrix.


2004 ◽  
Vol 848 ◽  
Author(s):  
James V. Marzik ◽  
Raymond J. Suplinskas ◽  
William J. Croft ◽  
Warren J. MoberlyChan ◽  
John D. DeFouw ◽  
...  

ABSTRACTBoron fibers made by a commercial chemical vapor deposition (CVD) process have been used as precursors for the formation of magnesium diboride (MgB2) superconducting wires. Prior to a reaction with magnesium, the addition of dopants such as carbon and titanium to the boron fiber has been shown to enhance the superconducting properties of MgB2. These dopants also influence the kinetics of the reaction with magnesium. In this study, the effect of carbon dopant additions on the microstructure of boron fibers was investigated using powder x-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Additionally, bundles of boron fibers were pressure infiltrated with molten magnesium and reacted at elevated temperatures. The microstructure and microchemistry of the fiber-metal interfaces were investigated by TEM and energy dispersive x-ray analysis (EDS).


2018 ◽  
Vol 186 ◽  
pp. 02003
Author(s):  
Chao-Lung Hwang ◽  
Duy-Hai Vo ◽  
Mitiku Damtie Yehualaw ◽  
Vu-An Tran

The aim of this study is to analysis the effect of MgO on strength development and microstructure of alkali-activated slag (AAS) in air curing condition. Four mixtures of AAS are prepared using different MgO content (0%, 5%, 10%, and 15 % by weight of slag) at water to binder ratio of 0.4. The flow, compressive strength, scanning electron microscopy, and X-ray diffraction are tested under relevant standards. The addition of MgO significantly accelerated the hydration rate of AAS. AAS with adding MgO tended to increase the compressive strength and to reduce the flow. The higher adding MgO content was associated with higher hydrotalcite-like phase (Ht) formation which improved the microstrure of AAS in the air curing condition.


2010 ◽  
Vol 434-435 ◽  
pp. 113-115
Author(s):  
Yan Rong Bao ◽  
Bin Li ◽  
Zong De Liu ◽  
Zhi Jian Bao

The impact properties of TiC-Fe composite at different temperatures prepared by SHS / PHIP technique were investigated by impact test which was conducted in air from 20°C to 100020°C. Morphology of the impact fracture surface was observed by scanning electron microscope (SEM) and phase composition before and after the impact test was analyzed with X-Ray Diffraction. The results indicate that the impact toughness of TiC-Fe composite increases significantly with the temperature increasing above 700°C, representing a minimum value at 700°C. The impact fracture of TiC-Fe composite at room temperature, 700°C, 900°C and 1000°C is mainly brittle, showing certain plasticity with morphology of dimples as the temperature increases above 700°C. A small amount of Fe2O3 exists in the fracture surface, indicating TiC-Fe composite is oxidized partially during the impact test at elevated temperatures.


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3513 ◽  
Author(s):  
Yubin Jun ◽  
Seong Ho Han ◽  
Tae Yong Shin ◽  
Jae Hong Kim

The effect of CO2 curing on alkali-activated slag paste activated by a mixture of sodium hydroxide and sodium silicate solutions is reported in this paper. The paste samples after demolding were cured in three different curing environments as follows: (1) environmental chamber maintained at 85% relative humidity (RH) and 25 °C; (2) 3-bar CO2 pressure vessel; and (3) CO2 chamber maintained at 20% CO2 concentration, 70% RH and 25 °C. The hardened samples were then subjected to compressive strength measurement, X-ray diffraction analysis, and thermogravimetry. All curing conditions used in this study were beneficial for the strength development of the alkali-activated slag paste samples. Among the curing environments, the 20% CO2 chamber was the most effective on compressive strength development; this is attributed to the simultaneous supply of moisture and CO2 within the chamber. The results of X-ray diffraction and thermogravimetry show that the alkali-activated slag cured in the 20% CO2 chamber received a higher amount of calcium silicate hydrate (C-S-H), while calcite formed at an early age was consumed with time. C-S-H was formed by associating the calcite generated by CO2 curing with the silica gel dissolved from alkali-activated slag.


2010 ◽  
Vol 123-125 ◽  
pp. 1191-1194 ◽  
Author(s):  
Wimonlak Sutapun ◽  
Nitinat Suppakarn ◽  
Yupaporn Ruksakulpiwat

In this study, untreated and alkali-treated vetiver fibers were characterized by thermogravimetric analysis, BET surface analysis, X-ray diffraction and FTIR (ATR) microspectroscopy,. It was revealed that the alkaline treatment influenced properties of vetiver fiber. By the treatment, some hemicellulose and lignin were removed, resulting in higher decomposition temperatures. In addition, the specific surface area were decreased, and crystalline structure was altered. However, no evidence of changes in surface functional groups was observed.


Author(s):  
T. Gulik-Krzywicki ◽  
M.J. Costello

Freeze-etching electron microscopy is currently one of the best methods for studying molecular organization of biological materials. Its application, however, is still limited by our imprecise knowledge about the perturbations of the original organization which may occur during quenching and fracturing of the samples and during the replication of fractured surfaces. Although it is well known that the preservation of the molecular organization of biological materials is critically dependent on the rate of freezing of the samples, little information is presently available concerning the nature and the extent of freezing-rate dependent perturbations of the original organizations. In order to obtain this information, we have developed a method based on the comparison of x-ray diffraction patterns of samples before and after freezing, prior to fracturing and replication.Our experimental set-up is shown in Fig. 1. The sample to be quenched is placed on its holder which is then mounted on a small metal holder (O) fixed on a glass capillary (p), whose position is controlled by a micromanipulator.


Sign in / Sign up

Export Citation Format

Share Document