scholarly journals Synthesis of Heart/Dumbbell-Like CuO Functional Nanostructures for the Development of Uric Acid Biosensor

Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1378 ◽  
Author(s):  
Zafar Ibupoto ◽  
Aneela Tahira ◽  
Hamid Raza ◽  
Gulzar Ali ◽  
Aftab Khand ◽  
...  

It is always demanded to prepare a nanostructured material with prominent functional properties for the development of a new generation of devices. This study is focused on the synthesis of heart/dumbbell-like CuO nanostructures using a low-temperature aqueous chemical growth method with vitamin B12 as a soft template and growth directing agent. CuO nanostructures are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) techniques. CuO nanostructures are heart/dumbbell like in shape, exhibit high crystalline quality as demonstrated by XRD, and have no impurity as confirmed by XPS. Apparently, CuO material seems to be porous in structure, which can easily carry large amount of enzyme molecules, thus enhanced performance is shown for the determination of uric acid. The working linear range of the biosensor is 0.001 mM to 10 mM with a detection limit of 0.0005 mM and a sensitivity of 61.88 mV/decade. The presented uric acid biosensor is highly stable, repeatable, and reproducible. The analytical practicality of the proposed uric acid biosensor is also monitored. The fabrication methodology is inexpensive, simple, and scalable, which ensures the capitalization of the developed uric acid biosensor for commercialization. Also, CuO material can be used for various applications such as solar cells, lithium ion batteries, and supercapacitors.

Author(s):  
Xinyue Li ◽  
Marco Fortunato ◽  
Anna Maria Cardinale ◽  
Angelina Sarapulova ◽  
Christian Njel ◽  
...  

AbstractNickel aluminum layered double hydroxide (NiAl LDH) with nitrate in its interlayer is investigated as a negative electrode material for lithium-ion batteries (LIBs). The effect of the potential range (i.e., 0.01–3.0 V and 0.4–3.0 V vs. Li+/Li) and of the binder on the performance of the material is investigated in 1 M LiPF6 in EC/DMC vs. Li. The NiAl LDH electrode based on sodium alginate (SA) binder shows a high initial discharge specific capacity of 2586 mAh g−1 at 0.05 A g−1 and good stability in the potential range of 0.01–3.0 V vs. Li+/Li, which is better than what obtained with a polyvinylidene difluoride (PVDF)-based electrode. The NiAl LDH electrode with SA binder shows, after 400 cycles at 0.5 A g−1, a cycling retention of 42.2% with a capacity of 697 mAh g−1 and at a high current density of 1.0 A g−1 shows a retention of 27.6% with a capacity of 388 mAh g−1 over 1400 cycles. In the same conditions, the PVDF-based electrode retains only 15.6% with a capacity of 182 mAh g−1 and 8.5% with a capacity of 121 mAh g−1, respectively. Ex situ X-ray photoelectron spectroscopy (XPS) and ex situ X-ray absorption spectroscopy (XAS) reveal a conversion reaction mechanism during Li+ insertion into the NiAl LDH material. X-ray diffraction (XRD) and XPS have been combined with the electrochemical study to understand the effect of different cutoff potentials on the Li-ion storage mechanism. Graphical abstract The as-prepared NiAl-NO3−-LDH with the rhombohedral R-3 m space group is investigated as a negative electrode material for lithium-ion batteries (LIBs). The effect of the potential range (i.e., 0.01–3.0 V and 0.4–3.0 V vs. Li+/Li) and of the binder on the material’s performance is investigated in 1 M LiPF6 in EC/DMC vs. Li. Ex situ X-ray photoelectron spectroscopy (XPS) and ex situ X-ray absorption spectroscopy (XAS) reveal a conversion reaction mechanism during Li+ insertion into the NiAl LDH material. X-ray diffraction (XRD) and XPS have been combined with the electrochemical study to understand the effect of different cutoff potentials on the Li-ion storage mechanism. This work highlights the possibility of the direct application of NiAl LDH materials as negative electrodes for LIBs.


2020 ◽  
Vol 118 ◽  
pp. 106790
Author(s):  
Hisao Kiuchi ◽  
Kazuhiro Hikima ◽  
Keisuke Shimizu ◽  
Ryoji Kanno ◽  
Fukunaga Toshiharu ◽  
...  

2020 ◽  
Vol 20 (11) ◽  
pp. 6782-6787
Author(s):  
Yeon-Ju Lee ◽  
Tae-Hyun Ha ◽  
Gyu-Bong Cho ◽  
Ki-Won Kim ◽  
Jou-Hyeon Ahn ◽  
...  

In this study, NiS/graphene nanocomposites were synthesized by simple heat treatment method of three graphene materials (graphene oxide (GO), reduced graphene oxide (rGO) and nitrogen-doped graphene oxide (N-rGO)) and NiS precursor. The morphology and crystal structure of NiS/graphene nanocomposites were characterized using field emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Electrochemical properties were also investigated. NiS/graphene nanocomposites homogeneously wrapped by graphene materials have been successfully manufactured. Among the three nanocomposites, NiS/N-rGO nanocomposite exhibited the highest initial and retention capacity in discharge, respectively, of 1240 mAh/g and 467 mAh/g up to 100 cycles at 0.5 C.


2012 ◽  
Vol 24 (6) ◽  
pp. 1107-1115 ◽  
Author(s):  
Bertrand Philippe ◽  
Rémi Dedryvère ◽  
Joachim Allouche ◽  
Fredrik Lindgren ◽  
Mihaela Gorgoi ◽  
...  

1997 ◽  
Vol 496 ◽  
Author(s):  
Kevin R. Zavadil ◽  
Ronald A. Guidotti ◽  
William R. Even

AbstractDisordered polymethacrylonitrile (PMAN) carbon monoliths have been studied as potential tailored electrodes for lithium ion batteries. A combination of electrochemical and surface spectroscopie probes have been used to investigate irreversible loss mechanisms. Voltammetric measurements show that Li intercalates readily into the carbon at potentials IV positive of the reversible Li potential. The coulometric efficiency rises rapidly from 50% for the first potential cycle to greater than 85% for the third cycle, indicating that solvent decomposition is a self-limiting process. Surface film composition and thickness, as measured by x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS), does not vary substantially when compared to more ordered carbon surfaces. Li+ profiles are particularly useful in discriminating between the bound states of Li at the surface of solution permeable PMAN carbons.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Jialiang Tang ◽  
Vinodkumar Etacheri ◽  
Vilas G. Pol

Abstract The conversion of allergic pollen grains into carbon microstructures was carried out through a facile, one-step, solid-state pyrolysis process in an inert atmosphere. The as-prepared carbonaceous particles were further air activated at 300 °C and then evaluated as lithium ion battery anodes at room (25 °C) and elevated (50 °C) temperatures. The distinct morphologies of bee pollens and cattail pollens are resembled on the final architecture of produced carbons. Scanning Electron Microscopy images shows that activated bee pollen carbon (ABP) is comprised of spiky, brain-like and tiny spheres; while activated cattail pollen carbon (ACP) resembles deflated spheres. Structural analysis through X-ray diffraction and Raman spectroscopy confirmed their amorphous nature. X-ray photoelectron spectroscopy analysis of ABP and ACP confirmed that both samples contain high levels of oxygen and small amount of nitrogen contents. At C/10 rate, ACP electrode delivered high specific lithium storage reversible capacities (590 mAh/g at 50 °C and 382 mAh/g at 25 °C) and also exhibited excellent high rate capabilities. Through electrochemical impedance spectroscopy studies, improved performance of ACP is attributed to its lower charge transfer resistance than ABP. Current studies demonstrate that morphologically distinct renewable pollens could produce carbon architectures for anode applications in energy storage devices.


Sign in / Sign up

Export Citation Format

Share Document