scholarly journals Replication of Micro- and Nanofeatures in Injection Molding of Two PLA Grades with Rapid Surface-Temperature Modulation

Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1442 ◽  
Author(s):  
Sara Liparoti ◽  
Vito Speranza ◽  
Roberto Pantani

The production by injection molding of polymeric components having micro- and nanometrical surfaces is a complex task. Generally, the accurate replication of micro- and nanometrical features on the polymeric surface during the injection-molding process is prevented by of the low mold temperature adopted to reduce cooling time. In this work, we adopt a system that allows fast heating of the cavity surface during the time the melt reaches the cavity, and fast cooling after heater deactivation. A nickel insert with micro- and nanofeatures in relief is located on the cavity surface. Replication accuracy is analyzed by Atomic Force Microscopy under different injection-molding conditions. Two grades of polylactic acid with different viscosity have been adopted. The results indicate that the higher the cavity surface temperature is, the higher the replication accuracy is. The viscosity has a significant effect only in the replication of the microfeatures, whereas its effect results are negligible in the replication of nanofeatures, thus suggesting that the interfacial phenomena are more important for replication at a nanometric scale. The evolution of the crystallinity degree on the surface also results in a key factor on the replication of nanofeatures.

Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 424 ◽  
Author(s):  
Vito Speranza ◽  
Sara Liparoti ◽  
Roberto Pantani ◽  
Giuseppe Titomanlio

Mold surface temperature strongly influences the molecular orientation and morphology developed in injection molded samples. In this work, an isotactic polypropylene was injected into a rectangular mold, in which the cavity surface temperature was properly modulated during the process by an electrical heating device. The induced thermo-mechanical histories strongly influenced the morphology developed in the injection molded parts. Polarized optical microscope and atomic force microscope were adopted for morphological investigations. The combination of flow field and cooling rate experienced by the polymer determined the hierarchical structure. Under strong flow fields and high temperatures, a tightly packed structure, called shish-kebab, aligned along the flow direction, was observed. Under weak flow fields, the formation of β-phase, as cylindrites form, was observed. The formation of each morphological structure was analyzed and discussed on the bases of the flow and temperature fields, experienced by the polymer during each stage of the injection molding process.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3236
Author(s):  
Sara Liparoti ◽  
Vito Speranza ◽  
Roberto Pantani ◽  
Giuseppe Titomanlio

The possibility of tailoring key surface properties through the injection molding process makes it intriguing from the perspective of sustainability enhancement. The surface properties depend on the replication accuracy of micro and nanostructures on moldings; such an accuracy is enhanced with cavity temperature. The simulation of the injection molding process is very challenging in the presence of micro and nanostructures on the cavity surface; this does not allow for the neglect of phenomena generally considered not to influence the overall process. In this paper, a multiscale approach was proposed: in the first step, the simulation of the overall process was conducted without considering the presence of the microstructure; in the second step the outputs of the first step were used as an input to simulate the replication of the microfeature. To this purpose, a lubrication approximation was adopted, and the contribution of the trapped air, which slows down the polymer advancement, was accounted for. A modification of the viscosity equation was also proposed to describe the rheological behavior of isotactic polypropylene at very low temperatures. Concerning the microcavity filling simulation, the modification of the viscosity description at low temperatures consistently describes the process, in terms of polymer solidification. Concerning the replication accuracy, it increases with the cavity surface temperature, consistently with the experimental observations.


2011 ◽  
Vol 483 ◽  
pp. 53-57 ◽  
Author(s):  
Duo Yang ◽  
Chong Liu ◽  
Zheng Xu ◽  
Ji Zhang Wang ◽  
Li Ding Wang

Micro-channels were the main microstructures in most micro-fluidic devices. In this paper, the effects of injection molding process parameters on the replicability of micro-channels profile are studied. Orthogonal experiments (Taguchi method) are carried out to establish the relationship between injection process parameters and replication accuracy for various micro-channels. Experimental results show that mold temperature and packing pressure are the principal factors in molding process. The replication accuracy depends strongly on the processing conditions. The replication accuracy reached about 99.84% using the optimum parameters.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 965 ◽  
Author(s):  
Nguyen Truong Giang ◽  
Pham Son Minh ◽  
Tran Anh Son ◽  
Tran Minh The Uyen ◽  
Thanh-Hai Nguyen ◽  
...  

In the injection molding field, the flow of plastic material is one of the most important issues, especially regarding the ability of melted plastic to fill the thin walls of products. To improve the melt flow length, a high mold temperature was applied with pre-heating of the cavity surface. In this paper, we present our research on the injection molding process with pre-heating by external gas-assisted mold temperature control. After this, we observed an improvement in the melt flow length into thin-walled products due to the high mold temperature during the filling step. In addition, to develop the heating efficiency, a flow focusing device (FFD) was applied and verified. The simulations and experiments were carried out within an air temperature of 400 °C and heating time of 20 s to investigate a flow focusing device to assist with external gas-assisted mold temperature control (Ex-GMTC), with the application of various FFD types for the temperature distribution of the insert plate. The heating process was applied for a simple insert model with dimensions of 50 mm × 50 mm × 2 mm, in order to verify the influence of the FFD geometry on the heating result. After that, Ex-GMTC with the assistance of FFD was carried out for a mold-reading process, and the FFD influence was estimated by the mold heating result and the improvement of the melt flow length using acrylonitrile butadiene styrene (ABS). The results show that the air sprue gap (h) significantly affects the temperature of the insert and an air sprue gap of 3 mm gives the best heating rate, with the highest temperature being 321.2 °C. Likewise, the actual results show that the height of the flow focusing device (V) also influences the temperature of the insert plate and that a 5 mm high FFD gives the best results with a maximum temperature of 332.3 °C. Moreover, the heating efficiency when using FFD is always higher than without FFD. After examining the effect of FFD, its application was considered, in order to improve the melt flow length in injection molding, which increased from 38.6 to 170 mm, while the balance of the melt filling was also clearly improved.


2020 ◽  
Vol 40 (9) ◽  
pp. 783-795
Author(s):  
Sara Liparoti ◽  
Vito Speranza ◽  
Annarita De Meo ◽  
Felice De Santis ◽  
Roberto Pantani

AbstractOne of the most significant issues, when thin parts have to be obtained by injection molding (i.e. in micro-injection molding), is the determination of the conditions of pressure, mold temperature, and injection temperature to adopt to completely fill the cavity. Obviously, modern computational methods allow the simulation of the injection molding process for any material and any cavity geometry. However, this simulation requires a complete characterization of the material for what concerns the rheological and thermal parameters, and also a suitable criterion for solidification. These parameters are not always easily reachable. A simple test aimed at obtaining the required parameters is then highly advantageous. The so-called spiral flow test, consisting of measuring the length reached by a polymer in a long cavity under different molding conditions, is a method of this kind. In this work, with reference to an isotactic polypropylene, some spiral flow tests obtained with different mold temperatures and injection pressures are analyzed with a twofold goal: on one side, to obtain from a few simple tests the basic rheological parameters of the material; on the other side, to suggest a method for a quick prediction of the final flow length.


2013 ◽  
Vol 345 ◽  
pp. 586-590 ◽  
Author(s):  
Xiao Hong Tan ◽  
Lei Gang Wang ◽  
Wen Shen Wang

To obtain optimal injection process parameters, GA was used to optimize BP network structure based on Moldflow simulation results. The BP network was set up which considering the relationship between volume shrinkage of plastic parts and injection parameters, such as mold temperature, melt temperature, holding pressure and holding time etc. And the optimal process parameters are obtained, which is agreed with actual results. Using BP network to predict injection parameters impact on parts quality can effectively reduce the difficulty and workload of other modeling methods. This method can be extended to other quality prediction in the process of plastic parts.Keyword: Genetic algorithm (GA);Neural network algorithm (BP);Injection molding process optimization;The axial deformation


2018 ◽  
Vol 25 (3) ◽  
pp. 593-601 ◽  
Author(s):  
Jixiang Zhang ◽  
Xiaoyi Yin ◽  
Fengzhi Liu ◽  
Pan Yang

Abstract Aiming at the problem that a thin-walled plastic part easily produces warpage, an orthogonal experimental method was used for multiparameter coupling analysis, with mold structure parameters and injection molding process parameters considered synthetically. The plastic part deformation under different experiment schemes was comparatively studied, and the key factors affecting the plastic part warpage were analyzed. Then the injection molding process was optimized. The results showed that the important order of the influence factors for the plastic part warpage was packing pressure, packing time, cooling plan, mold temperature, and melt temperature. Among them, packing pressure was the most significant factor. The optimal injection molding process schemes reducing the plastic part warpage were melt temperature (260°C), mold temperature (60°C), packing pressure (150 MPa), packing time (2 s), and cooling plan 3. In this situation, the forming plate flatness was better.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1004 ◽  
Author(s):  
Thanh Trung Do ◽  
Tran Minh The Uyen ◽  
Pham Son Minh

In thin wall injection molding, the filling of plastic material into the cavity will be restricted by the frozen layer due to the quick cooling of the hot melt when it contacts with the lower temperature surface of the cavity. This problem is heightened in composite material, which has a higher viscosity than pure plastic. In this paper, to reduce the frozen layer as well as improve the filling ability of polyamide 6 reinforced with 30 wt.% glass fiber (PA6/GF30%) in the thin wall injection molding process, a preheating step with the internal gas heating method was applied to heat the cavity surface to a high temperature, and then, the filling step was commenced. In this study, the filling ability of PA6/GF30% was studied with a melt flow thickness varying from 0.1 to 0.5 mm. To improve the filling ability, the mold temperature control technique was applied. In this study, an internal gas-assisted mold temperature control (In-GMTC) using different levels of mold insert thickness and gas temperatures to achieve rapid mold surface temperature control was established. The heating process was observed using an infrared camera and estimated by the temperature distribution and the heating rate. Then, the In-GMTC was employed to produce a thin product by an injection molding process with the In-GMTC system. The simulation results show that with agas temperature of 300 °C, the cavity surface could be heated under a heating rate that varied from 23.5 to 24.5 °C/s in the first 2 s. Then, the heating rate decreased. After the heating process was completed, the cavity temperature was varied from 83.8 to about 164.5 °C. In-GMTC was also used for the injection molding process with a part thickness that varied from 0.1 to 0.5 mm. The results show that with In-GMTC, the filling ability of composite material clearly increased from 2.8 to 18.6 mm with a flow thickness of 0.1 mm.


Sign in / Sign up

Export Citation Format

Share Document