scholarly journals Evaluation of Chemical Mechanical Polishing-Based Surface Modification on 3D Dental Implants Compared to Alternative Methods

Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2286 ◽  
Author(s):  
Riaid Alsaeedi ◽  
Z. Ozdemir

Chemical mechanical polishing (CMP) has been introduced in previous studies as a synergistic technique to modify the surface chemistry and topography of titanium-based implants to control their biocompatibility. In this study, the effectiveness of CMP implementation on titanium-based implant surface modification was compared to machined implants, such as baseline and etching and biphasic calcium phosphate (BCP) particle-based sand blasting treatments, in terms of the surface chemical and mechanical performance. Initially, a lab-scale 3D CMP technique was developed and optimized on commercial dental implant samples. The mechanical competitiveness of the dental implants treated with the selected methods was examined with the Vickers microhardness test as well as pull-out force and removal torque force measurements. Furthermore, the surface structures were quantified through evaluation of the arithmetic mean roughness parameter (Ra). Subsequently, the surface chemistry changes on the treated implants were studied as wettability by contact angle measurement, and surface passivation was evaluated through electrochemical methods. In each evaluation, the CMP treated samples were observed to perform equal or better than the baseline machined implants as well as the current method of choice, the BCP treatment. The ability to control the surface topography and chemistry simultaneously by the use of CMP technique is believed to be the motivation for its adaptation for the modification of implant surfaces in the near future.

Author(s):  
Karthikeyan Subramani

This manuscript reviews about titanium surface modification techniques for its application in orthopaedic and dental implants. There are a few limitations in the long term prognosis of orthopaedic and dental implants. Poor osseointegration with bone, periimplant infection leading to implant failure and short term longevity demanding revision surgery, are to mention a few. Micro- and nanoscale modification of titanium surface using physicochemical, morphological and biochemical approaches have resulted in higher bone to implant contact ratio and improved osseointegration. With recent advances in micro, nano-fabrication techniques and multidisciplinary research studies focusing on bridging biomaterials for medical applications, TiO2 nanotubes have been extensively studied for implant applications. The need for titanium implant surface that can closely mimic the nanoscale architecture of human bone has become a priority. For such purpose, TiO2 nanotubes of different dimensions and architectural fashions at the nanoscale level are being evaluated. This manuscript discusses in brief about the in-vitro and in-vivo studies on titanium surface modification techniques. This manuscript also addresses the recent studies done on such nanotubular surfaces for the effective delivery of osteoinductive growth factors and anti bacterial/ anti inflammatory drugs to promote osseointegration and prevent peri-implant infection.


2021 ◽  
Author(s):  
Abdulqadir Rampurawala ◽  
Amol Patil

Orthodontic miniscrews have had a considerable impact on modern orthodontic treatment, not only by providing a new source of anchors for anchorage-demanding cases, but also for force management and control. Whilst miniscrews need to be mechanically stable during treatment to provide sufficient anchorage and predictable force control, as temporary anchorage devices they need also be easy to remove after orthodontic treatment. These requirements differentiate orthodontic miniscrews from dental implants - which once placed, are not to be removed - and dictate the approach as to how their clinical performance can be optimized. Over the past decade, various titanium surface modifications and improvements in implant surface topography have shown to enhance osseointegration of endosseous dental implants. Some of these techniques have helped provide a similar enhancement of the biomechanical potential of orthodontic miniscrews as well. In this perspective, we present a brief discussion on all such reported techniques followed by a detailed account of the most recently proposed ultraviolet photofunctionalization technique - a novel chair-side surface modification method.


2021 ◽  
Vol 10 (17) ◽  
pp. 1246-1250
Author(s):  
Shamaa Anjum ◽  
Arvina Rajasekar

The use of dental implants for the replacement of missing teeth has increased in the last 30 years. The success rates for implant placement depend on a series of both biological and clinical steps which starts with primary stability that is being provided by the amount, quality and the distribution of bone within the proposed implant site. The most important factor in implant osseointegration is surface roughness, which shows increased osteoblast activity at 1 to 100 μm of the surface roughness when compared to a smooth surface. Rough surfaces have excellent osseointegration than smooth surfaces, but the results of research have been diverse, and it is evident that multiple treatments provide good results. The surfaces of a dental implant have been modified in several ways to improve its biocompatibility and speed up osseointegration. Literature says that any surface modification provides a good surface for osseointegration of the implant when the surface roughness is about 0.44 ~ 8.68 μm. It is also said that acid etching and coating are the most preferred methods for creating good roughness of the implant surface. From animal studies, it is known that implant surface modifications provided by biomolecular coating seemed to enhance the osseointegration by promoting peri-implant bone formation in the early stages of healing. It also seemed to improve histomorphometric analysis and biomechanical testing results. This article reviews the surface modifications of dental implants for the achievement of better success rates. Various methods are used to modify the topography or the chemistry of the implant surfaces which includes acid etching, anodic oxidation, blasting, treatment with fluoride, and calcium phosphate coating. These modifications provide a faster and a stronger osseointegration.1 Recently, hydrophilic properties added to the roughened surfaces or some osteogenic peptides coated on the surfaces shows higher biocompatibility and have induced faster osseointegration compared to the existing modified surfaces. With development in surface engineering techniques, new information on the properties, behaviour, and the reaction of various materials could be discovered which in turn allows the discovery of new materials, modification techniques and design of bio implants for the future. KEY WORDS Dental Implants, Surface Modifications, Biocompatibility, Surface Topography


2020 ◽  
Vol 14 (1) ◽  
pp. 52-58 ◽  
Author(s):  
Lee Kian Khoo ◽  
Sirichai Kiattavorncharoen ◽  
Verasak Pairuchvej ◽  
Nisanat Lakkhanachatpan ◽  
Natthamet Wongsirichat ◽  
...  

Introduction: Implant surface modification methods have recently involved laser treatment to achieve the desired implant surface characteristics. Meanwhile, surface modification could potentially introduce foreign elements to the implant surface during the manufacturing process. Objectives: The study aimed to investigate the surface chemistry and topography of commercially available laser-modified titanium implants, together with evaluating the cell morphology and cell adhesion of human fetal osteoblast (hFOB) seeded onto the same implants. Method: Six (6) samples of commercially available laser-modified titanium implants were investigated. These implants were manufactured by two different companies. Three (3) implants were made from commercially pure grade 4 Titanium (Brand X); and three were made from grade 5 Ti6Al4V (Brand Y). The surface topography of these implants was analyzed by scanning electron microscope (SEM) and the surface chemistry was evaluated with electron dispersive x-ray spectroscopy(EDS). Human fetal osteoblasts were seeded onto the implant fixtures to investigate the biocompatibility and adhesion. Results & Discussion: Brand X displayed dark areas under SEM while it was rarely found on brand Y. These dark areas were consistent with their organic matter. The hFOB cell experiments revealed cell adhesion with filopodia on Brand X samples which is consistent with cell maturation. The cells on Brand Y were morphologically round and lacked projections, one sample was devoid of any noticeable cells under SEM. Cell adhesion was observed early at 48 hrs in laser-irradiated titanium fixtures from both the brands. Conclusion: The presence of organic impurities in Brand X should not be overlooked because disruption of the osseointegration process may occur due to the rejection of the biomaterial in an in-vivo model. Nevertheless, there was insufficient evidence to link implant failure directly with carbon contaminated implant surfaces. Further studies to determine the toxicity of Vanadium from Ti6Al4V in an in-vivo environment should indicate the reason for different cell maturation.


Author(s):  
Ayousha Iqbal ◽  
Komal Arshad ◽  
Maria Shakoor Abbasi ◽  
Maryam Maqsood ◽  
Ruqaya Shah ◽  
...  

Abstract Implantology is one of the most investigated topic in modern dentistry, This review is aimed to systematically summarize all the industrial, mass production and experimental trends in dental implant manufacture relative primarily to their surface modification over the last year. Research was conducted in Army Medical college, NUMS, Rawalpindi, Armed forces institute of dentistry, CMH, Rawalpindi, Foundation University college of Dentistry, FFH, DHA, Islamabad and the HEC Library, HEC, Islamabad. Literature was searched on PubMed, SCOPUS, MEDLINE, Cochrane and Science direct. The key words employed were “dental Implants”, “surface modification”, “surface morphology”, “surface treatment” and “surface augmentation”. A total of 38 articles were short listed and reviewed in detail. There is abundant evidence suggesting the importance of these surface modification on improving the implant success. Several strategies have been suggested to modify the implant surface topography as well as surface chemistry in order to achieve a micro-porous structure with nano scale architecture, with increased bio activity; hydrophilicity and anti-bacterial properties. There is commendable success with many of these strategies in the lab. However, following the lab success in ex vivo studies, very few of these surface modalities have found their way to clinical set-ups. Key Words: Dental Implants, surface modification, surface morphology, Continuous...


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1678
Author(s):  
Andreas Stavropoulos ◽  
Rebecca Sandgren ◽  
Benjamin Bellon ◽  
Anton Sculean ◽  
Benjamin E. Pippenger

Surface chemistry and nanotopography of dental implants can have a substantial impact on osseointegration. The aim of this investigation was to evaluate the effects of surface chemistry and nanotopography on the osseointegration of titanium-zirconium (TiZr; Roxolid®) discs, using a biomechanical pull-out model in rabbits. Two discs each were placed in both the right and left tibiae of 16 rabbits. Five groups of sandblasted acid etched (SLA) discs were tested: (1) hydrophobic without nanostructures (dry/micro) (n = 13); (2) hydrophobic with nanostructures, accelerated aged (dry/nano/AA) (n = 12); (3) hydrophilic without nanostructures (wet/micro) (n = 13); (4) hydrophilic with nanostructures, accelerated aged (wet/nano/AA; SLActive®) (n = 13); (5) hydrophilic with nanostructures, real-time aged (wet/nano/RTA). The animals were sacrificed after four weeks and the biomechanical pull-out force required to remove the discs was evaluated. Adjusted mean pull-out force was greatest for group wet/nano/RTA (64.5 ± 17.7 N) and lowest for group dry/micro (33.8 ± 10.7 N). Multivariate mixed model analysis showed that the pull-out force was significantly greater for all other disc types compared to the dry/micro group. Surface chemistry and topography both had a significant effect on pull-out force (p < 0.0001 for both), but the effect of the interaction between chemistry and topography was not significant (p = 0.1056). The introduction of nanostructures on the TiZr surface significantly increases osseointegration. The introduction of hydrophilicity to the TiZr implant surface significantly increases the capacity for osseointegration, irrespective of the presence or absence of nanotopography.


Sign in / Sign up

Export Citation Format

Share Document