scholarly journals Development of Alumina–Mesoporous Organosilica Hybrid Materials for Carbon Dioxide Adsorption at 25 °C

Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2301 ◽  
Author(s):  
Chamila Gunathilake ◽  
Rohan Dassanayake ◽  
Chandrakantha Kalpage ◽  
Mietek Jaroniec

Two series of alumina (Al2O3)–mesoporous organosilica (Al–MO) hybrid materials were synthesized using the co-condensation method in the presence of Pluronic 123 triblock copolymer. The first series of Al–MO samples was prepared using aluminum nitrate nanahydrate (Al–NN) and aluminum isopropoxide (Al–IP) as alumina precursors, and organosilanes with three different bridging groups, namely tris[3-(trimethoxysilyl)propyl]isocyanurate, 1,4-bis(triethoxysilyl)benzene, and bis(triethoxysilyl)ethane. The second series was obtained using the aforementioned precursors in the presence of an amine-containing 3-aminopropyltriethoxysilane to introduce, also, hanging groups. The Al–IP-derived mesostructures in the first series showed the well-developed porosity and high specific surface area, as compared to the corresponding mesostructures prepared in the second series with 3-aminopropyltriethoxysilane. The materials obtained from Al–NN alumina precursor possessed enlarged mesopores in the range of 3–17 nm, whereas the materials synthesized from Al–IP alumina precursor displayed relatively low pore widths in the range of 5–7 nm. The Al–IP-derived materials showed high CO2 uptakes, due to the enhanced surface area and microporosity in comparison to those observed for the samples of the second series with AP hanging groups. The Al–NN- and Al–IP-derived samples exhibited the CO2 uptakes in the range of 0.73–1.72 and 1.66–2.64 mmol/g at 1 atm pressure whereas, at the same pressure, the Al–NN and Al–IP-derived samples with 3-aminopropyl hanging groups showed the CO2 uptakes in the range of 0.72–1.51 and 1.70–2.33 mmol/g, respectively. These data illustrate that Al–MO hybrid materials are potential adsorbents for large-scale CO2 capture at 25 °C.

2006 ◽  
Vol 16 (24) ◽  
pp. 2354-2357 ◽  
Author(s):  
Michal Sabo ◽  
Winfried Böhlmann ◽  
Stefan Kaskel

Author(s):  
E. Ogbonnaya ◽  
S. Chukwu ◽  
D. Wood ◽  
L. Weiss

Solar energy is a renewable and sustainable energy source that has a promising potential for the rapidly growing energy demands across the world. Large scale power generation from the energy of the sun is well established utilizing both direct thermal energy conversion and conversion to electricity via photovoltaic processes. Solar thermal systems have been limited to macro systems, even though they operate at higher efficiency compared to photovoltaic systems. Solar energy harvesting requires the use of collector plates to capture incident radiation. The surface area exposed to incident radiation is critical in solar thermal energy harvesting. In this work, we have integrated micro technology processes and solar thermal energy to design and fabricate a micro solar thermal system for power generation. This work specifically examined surface area enhancement using MEMS-based techniques to maximize solar thermal absorption. Selective absorber coating and enhanced surface areas due to the incorporation of micro structures on the collector substrates were utilized. In this manner, an important component to an autonomous micro power supply is investigated. Advanced microfabrication and electrochemical deposition techniques were employed to generate a selective absorber surface with enhanced surface area on a silicon substrate. Microchannels were used to enhance the surface area on the substrate. The selective absorber coating consists of a bimetallic structure consisting of tin and nickel.


2012 ◽  
Vol 476-478 ◽  
pp. 714-720
Author(s):  
Bing Liu ◽  
Li Li ◽  
Li Qu

Multi cage-like zinc oxides were prepared via a facile hydrothermal method. The as-synthesized materials were characterized by means of XRD, TG-DTA, SEM, EDS, and N2 adsorption. The results indicate that the molar ratio of glucose to zinc cation has a significant effect on the morphology, surface area, pore size and distribution of the obtained products. This method is attractive for its merits such as simplicity, commercial feasibility, environmentally benign, surfactant-free, and good potential for scale-up.


1997 ◽  
Vol 36 (1) ◽  
pp. 129-137 ◽  
Author(s):  
Vibeke R. Borregaard

In the upgrade of wastewater treatment plants to include biological nutrient removal the space available is often a limiting facor. It may be difficult to use conventional suspended growth processes (i.e. activated sludge) owing to the relatively large surface area required for these processes. Recent years have therefore seen a revived interest in treatment technologies using various types of attached growth processes. The “new” attached growth processes, like the Biostyr process, utilise various kinds of manufactured media, e.g. polystyrene granules, which offer a high specific surface area, and are therefore very compact. The Biostyr plants allow a combination of nitrification-denitrification and filtration in one and the same unit. The results obtained are 8 mg total N/l and an SS content normally below 10 mg/l. The plants in Denmark which have been extended with a Biostyr unit have various levels of PLC control and on-line instrumentation.


Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 345 ◽  
Author(s):  
Lianzan Yang ◽  
Yongyan Li ◽  
Zhifeng Wang ◽  
Weimin Zhao ◽  
Chunling Qin

High-entropy alloys (HEAs) present excellent mechanical properties. However, the exploitation of chemical properties of HEAs is far less than that of mechanical properties, which is mainly limited by the low specific surface area of HEAs synthesized by traditional methods. Thus, it is vital to develop new routes to fabricate HEAs with novel three-dimensional structures and a high specific surface area. Herein, we develop a facile approach to fabricate nanoporous noble metal quasi-HEA microspheres by melt-spinning and dealloying. The as-obtained nanoporous Cu30Au23Pt22Pd25 quasi-HEA microspheres present a hierarchical porous structure with a high specific surface area of 69.5 m2/g and a multiphase approximatively componential solid solution characteristic with a broad single-group face-centered cubic XRD pattern, which is different from the traditional single-phase or two-phase solid solution HEAs. To differentiate, these are named quasi-HEAs. The synthetic strategy proposed in this paper opens the door for the synthesis of porous quasi-HEAs related materials, and is expected to promote further applications of quasi-HEAs in various chemical fields.


Sign in / Sign up

Export Citation Format

Share Document