scholarly journals Interlaminar Bonding Properties on Cement Concrete Deck and Phosphorous Slag Asphalt Pavement

Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1427 ◽  
Author(s):  
Guoping Qian ◽  
Shunjun Li ◽  
Huanan Yu ◽  
Xiangbing Gong

The slippage damage caused by weak interlaminar bonding between cement concrete deck and asphalt surface is a serious issue for bridge pavement. In order to evaluate the interlaminar bonding of cement concrete bridge deck and phosphorous slag (PS) asphalt pavement, the shear resistance properties of the bonding layer structure were studied through direct shear tests. The impact of PS as a substitute of asphalt mixture aggregate, interface characteristics, normal pressure, waterproof and cohesive layer types, temperature and shear rate on the interlaminar bonding properties were analyzed. The test results indicated that the interlaminar bonding of bridge deck pavement is improved after asphalt mixture fine aggregate was substituted with PS and PS powder, and the result indicated that the shear strength of grooved and aggregate-exposed interfaces is significantly higher than untreated interface, the PS micro-powder or anti-stripping agent can also improve the adhesion between layers when mixed into SBS asphalt. This study provided important theoretical and practical guidance for improving the shear stability of bridge deck pavement.

2014 ◽  
Vol 599 ◽  
pp. 224-229 ◽  
Author(s):  
Xiao Meng Ying ◽  
Deng Feng Zhang ◽  
Qin Yong Li ◽  
Lin Chun Meng

Based on influence of bridge structure caused by vibrating compaction and the properties of road roller, the combination of vibrating compaction and rubber-tyred kneading rolling can ensure the construction quality of cement concrete bridge deck asphalt mixture surfacing. It can guarantee the smoothness of asphalt mixture surfacing and avoid the shortage of compaction.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Wei Wang ◽  
Shuo Liu ◽  
Qizhi Wang ◽  
Wei Yuan ◽  
Mingzhang Chen ◽  
...  

Based on forced vibration tests for high-performance concrete (HPC), the influence of bridge vibration induced by traveling vehicle on compressive strength and durability of HPC has been studied. It is concluded that 1 d and 2 d compressive strength of HPC decreased significantly, and the maximum reduction rate is 9.1%, while 28 d compressive strength of HPC had a slight lower with a 3% maximal drop under the action of two simple harmonic vibrations with 2 Hz, 3 mm amplitude, and 4 Hz, 3 mm amplitude. Moreover, the vibration had a slight effect on the compressive strength of HPC when the simple harmonic vibration had 4 Hz and 1 mm amplitude; it is indicated that the amplitude exerts a more prominent influence on the earlier compressive strength with the comparison of the frequency. In addition, the impact of simple harmonic vibration on durability of HPC can be ignored; this shows the self-healing function of concrete resulting from later hydration reaction. Thus, the research achievements mentioned above can contribute to learning the laws by which bridge vibration affects the properties of concrete and provide technical support for the design and construction of the bridge deck pavement maintenance.


2018 ◽  
Vol 64 (3) ◽  
pp. 81-97
Author(s):  
P. Tutka ◽  
R. Nagórski ◽  
P. Radziszewski ◽  
M. Sarnowski ◽  
M. Złotowska

SummaryPavements made of cement concrete, used for road constructions, are damaged during use. This applies to both the pavements of rural and forest roads with very low traffic loads, as well as road pavements with high traffic loads. One of the most effective ways of repairing damaged concrete cement pavements is through placing an asphalt overlay on a concrete slab. In order to increase the fatigue life of the asphalt overlay, asphalt mixtures are modified with fibres. One technological solution is to use FRP (Fiber Reinforced Polymer), an innovative material with improved properties. The aim of this paper is to assess the impact of asphalt overlays modified with a new type of fibres to strengthen the durability of weakened cement concrete pavement structures. On the basis of the conducted analyses, it was shown that the use of an asphalt layer reinforcement increases fatigue life, for both 15 cm thick prefabricated slabs and a typical road pavement for average traffic made of 25 cm doweled and anchored concrete slabs. There was a significant increase in the fatigue life of the concrete pavement structure as a result of modifying the overlaid asphalt mixture with FRP fibres.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Djedjen Achmad ◽  
Desi Supriyan

ABSTRACTHas been researched the impact of mud in aggregate on geopolymer concrete with studies using the cement concrete as a reference. In this study both of concrete are mixed with a variation of mud of 0%, 0.75%, 3% and 5.75% of the combined aggregate weight. Compressive strength of cement concrete is designed with a target of 300 kg / cm2 and geopolymer concrete is made with water binder ratio (w/b) 0.25, Molarity 12 M, the ratio of sodium silicate and sodium hydroxide 1.5. At the age of 3, 7, 14 and 28 day tested of compressive strength, while the spliting test, flexural tensile strength, and modulus of elasticity are tested at 28 days. From the test results, the higher mud content in aggregate , the mechanical properties of the concrete are decreased. Based on testing of compressive strength in cement concrete at 28 days, with a 3% mud content (the content of the reference mud) turns of compressive strength decreased by 77.356%. Of the percentage reduction on the compressive strength of the cement concrete, can be compared to the mud content in geopolymer concrete at 2.04%. Thus the maximum mud on geopolymer concrete aggregate is, for coarse aggregate of 0.68% and a maximum mud content for fine aggregate was 3.4%.Key words : Mud, aggregate, concrete, cement, geopolimer, strengthABSTRAKTelah diteliti dampak kadar lumpur pada agregat untuk beton geopolimer dengan penelitian menggunakan benda uji beton semen sebagai acuan dan beton geopolimer. Dalam penelitian ini ke dua beton tersebut dicampur dengan lumpur gabungan agregat kasar dan agregat halus dengan variasi 0 %, 0.75 %, 3 % dan 5,75 % dari berat agregat gabungan. Beton semen dirancang dengan target kuat tekan 300 kg/cm2 dan beton geopolimer dibuat dengan campuran water binder ratio (w/b) 0.25, Molaritas 12 M, perbandingan sodium silikat dan sodium hidroksida 1.5. Pada umur 3, 7, 14 dan 28 hari dilakukan uji kuat tekan, sedangkan uji kuat tarik belah, uji kuat tarik lentur, dan modulus elastisitas dilakukan pada umur 28 hari. Dari hasil uji terlihat bahwa semakin tinggi kadar lumpur pada agregat, karakteristik mekanis kedua beton tersebut mengalami penurunan. Berdasarkan pengujian kuat tekan pada beton semen umur 28 hari, dengan kadar lumpur 3 % (kadar lumpur referensi) ternyata beton semen mengalami penurunan kuat tekan sebesar 77.356 %. Dari persentase penurunan kuat tekan beton semen tersebut, diplot pada grafik kuat tekan beton geopolimer maka persentase kadar lumpur gabungan yang mengalami penurunan 77.356 % adalah 2.04 %. Dengan demikian kadar lumpur maksimum pada agregat beton geopolimer adalah, untuk agregat kasar sebesar 0.68 % dan kadar lumpur maksimum untuk agregat halus adalah 3.4 %.Kata kunci : Lumpur, agregat, beton, semen, geopolimer, kekuatan


1970 ◽  
Vol 3 (1) ◽  
pp. 52-61
Author(s):  
Zuzana Florkova ◽  
Jana Pastorkova ◽  
Matus Farbak ◽  
Zuzana Kolkova ◽  
Peter Hrabovsky

Asphalt pavement micro texture values primarily depend on aggregate properties used in asphalt pavement mixture and by aggregate surfaces is secured the basic contact medium with vehicle tires. It often happens that new asphalt surfaces have not required skid resistance properties and is needed a certain period of time to eliminate film of bitumen binder which is coating the aggregate grain on the surface of pavement by action of vehicles. In most cases, the investigation of the aggregate micro texture impact on the pavement skid resistance properties is carried out under laboratory conditions and generally relates only to measurements on natural aggregate samples (without bitumen). However, due to coating of aggregate by bitumen binder, valleys between the individual peaks of aggregate are filled. Obviously, it can be supposed that the usage of high amount of bitumen content can leads to decreasing of aggregate micro texture values. From this point of view, it can be expected that change in micro texture values depends on the content of binder in the asphalt mixture. Particular aggregate grains were taken from asphalt mixtures samples (AC 8, AC 11 and SMA 11) produced in the laboratory, in order to determine the impact of aggregate coating by bitumen binder on micro texture change. Each usage asphalt mixture was produced with three different bitumen binder contents. Digital image analysis method was used for subsequent evaluation. Changes in the micro texture values depending on the amount of used bitumen binder and also on the calculated theoretical bitumen film thickness are investigated in the conclusion.


ICCTP 2010 ◽  
2010 ◽  
Author(s):  
Zhen-wu Shi ◽  
Wei Li ◽  
Li-ming Wang ◽  
Moatasim ◽  
Yong-fei Feng

2014 ◽  
Vol 1065-1069 ◽  
pp. 1780-1783 ◽  
Author(s):  
Tai Xiu Yang ◽  
Jing Zhu

Adding polymer into cement concrete is used to increase the interlayer bonding performance. The impact of polymer on the interlayer bonding performance was studied by shear strength and tensile strength test. The mix design of the interface agent was optimized through the tensile bending tests of different fiber and polymer dosage. The impact of casting methods and interface agent mix was studied through tests. The test results show that: adding organic fiber and polymer into cement concrete could significantly increase the interlayer bond strength. The interface agent of SBR (styrene-butadiene rubber) latex modified cement paste has better tensile bonding properties. When the ratio of cement to DB-1 latex is 3:2, it will effectively increase the interlayer bonding performance of cement concrete.


2010 ◽  
Vol 97-101 ◽  
pp. 2397-2402
Author(s):  
Tao Zhang ◽  
Yang Liang ◽  
Nan Yao

The shear force created by non-uniform loading on the asphalt and concrete surface is the main reason why bridge deck pavement is damaged extensively. Multi-function asphalt mixture shear apparatus is designed for dealing with this problem. After studying the composition of mechanical system and data acquisition system, design and develop the program of the system. During the study, the actual prototype is produced, and used in the asphalt mixture shear experiment. The experimental parameters can help the design of asphalt mixture and the prevention of the damage of asphalt concrete pavement.


Sign in / Sign up

Export Citation Format

Share Document