scholarly journals Lightweight and Durable PVDF–SSPF Composites for Photovoltaics Backsheet Applications: Thermal, Optical and Technical Properties

Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2104 ◽  
Author(s):  
M. H. Alaaeddin ◽  
S. M. Sapuan ◽  
M. Y. M. Zuhri ◽  
E. S. Zainudin ◽  
Faris M. AL- Oqla

Photovoltaic module backsheets are characterized according to their thermal, optical, mechanical, and technical properties. This work introduces new fabricated backsheets for PV modules using polyvinylidene fluoride (PVDF) reinforced with short sugar palm fiber (SSPF) composites. The preparation of composites undergoes multiple phases of fabrication. Thermal, optical, and technical investigations of their properties were conducted. Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, in-situ scanning probe microscopy (SPM), dynamic mechanical analysis (DMA), thermal mechanical analysis (TMA), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and prolonged technical testing were accomplished to expansively understand the complex behavior of composites under various conditions. The optical properties of PV backsheets are critical components in determining the reflectance, absorbance, and transmittance of light. The PVDF–SSPF composites exhibited exceptional compatibility and thermal stability, further revealing a homogenous composite structure with enhanced interfacial bonding between the short fiber and polymer matrix.

1986 ◽  
Vol 76 ◽  
Author(s):  
C. W. Wilkins ◽  
H. E. Bair ◽  
M. G. Chan ◽  
R. S. Hutton

ABSTRACTWe have studied some of the physical and mechanical properties of cyclized polybutadiene (CBR) dielectrics by dynamic mechanical analysis, thermal mechanical analysis, thermogravimetry, infrared analysis, and differential scanning calorimetry. Of interest is the difference in properties between thin (<30 μm) films which have been cured under vacuum and those which have been cured in air. Our results indicate that curing under vacuum prevents oxidation and reduces crosslinking. Vacuum cured films have 20% smaller moduli and 200 lower glass transition temperature than do films produced in air.


2007 ◽  
Vol 121-123 ◽  
pp. 1419-1424 ◽  
Author(s):  
S. Tsantzalis ◽  
P. Tsotra ◽  
P. Karapappas ◽  
A. Vavouliotis ◽  
N. Fanis ◽  
...  

Vapor growth carbon nanofibers (CNFs), lead zirconate titanate piezoelectric (PZT) particles, as well as a combination of these two were added in an epoxy resin (EP), and their influence on the curing reaction was investigated. Moreover, the cured samples were characterised by dynamic scanning calorimetry and dynamic thermal mechanical analysis. The presence of the fillers had no significant effect of the curing reaction of the EP system and the glass transition temperature, Tg.


1992 ◽  
Vol 269 ◽  
Author(s):  
Ray J. King ◽  
Michael J. Werner ◽  
Guillermo D. Mayorga

ABSTRACTMicrowave reflection resonator sensors have been developed to monitor the dynamic, in situ real and imaginary dielectric components (ε′, ε″) of thermoset polymer matrix composites and thermoplastics. These reusable and noninvasive sensors are conformably mounted in the autoclave mold in such a manner that the EM fields are strongly coupled to the resin. Tracking of (ε′, ε″) during the cure provides information about the chemical kinetics such as timing the point of minimum viscosity and monitoring the relative cure index. The sensor is readily adjustable for optimum coupling to the type of material being tested and is rated for temperatures up to 250°C (480*F). The technique is complementary to other analysis techniques such as Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA). A prototype software and electronics package has been developed to support the sensor.


2003 ◽  
Vol 767 ◽  
Author(s):  
A. Tregub ◽  
G. Ng ◽  
M. Moinpour

AbstractSoak of polyurethane-based CMP pads in tungsten slurry and de-ionized water and its effect on retention of thermal and mechanical properties of the pads was studied using Dynamic Mechanical Analysis (DMA), Thermal Mechanical Analysis (TMA), Thermal Gravimetric Analysis (TGA), and Modulated Differential Scanning Calorimetry (MDSC). Simultaneous cross-linking and plastisizing due to soak were established using DMA and MDSC analysis. The stable operating temperature range and its dependence on soak time were determined using TMA analysis. Substantial difference in diffusion behavior of the “soft” and “hard” pads was discovered: diffusion into the hard pads followed Fickian law [1], while diffusion into the multi-layer soft pads was dominated by the fast filling of the highly porous pad surface with liquid.During a traditional CMP process, which involves application of polishing pads and slurry, the pad properties can be substantially and irreversibly changed as the result of slurry/rinse water absorption.The retention of the pad properties after exposure was monitored using such thermal and mechanical techniques, as Thermal Mechanical Analysis (TMA), Dynamical Mechanical Analysis (DMA), Modulated Differential Scanning Calorimetry (MDSC), Thermal Gravimetric Analysis (TGA).


2019 ◽  
Vol 21 (27) ◽  
pp. 14879-14886
Author(s):  
Shaolai Wu ◽  
Debo Wang ◽  
Yuyong Zhong ◽  
Xiaohui Fang ◽  
Yongjun Chen ◽  
...  

The characteristic changes and the complete relaxation process of V2O5–P2O5 oxide glass are studied by dynamic thermal-mechanical analysis and differential scanning calorimetry.


2009 ◽  
Vol 2 (1) ◽  
pp. 99-107 ◽  
Author(s):  
S. M. M. Alam

Polyimide (PI)-inorganic like silica hybrid films were successfully prepared to combine the good performances of silica like tensile modulus, thermal stability etc. into organic PI. Polyamic acid (PAA), precursor of PI, was prepared from 3, 3′, 4, 4′-biphenyltetracarboxylic dianhydride (BPDA), p-phenylediamine (PDA) and in-situ formed silica was formed into PAA from tetraethoxysilane (TEOS) through in-situ sol-gel process. The films were transparent and became translucent in presence of up to 10% inorganic contents. The chemical structures were characterized by Fourier transform infrared spectroscopy (FTIR). The morphology of the films was investigated by scanning electronic microscopy (SEM). Differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), stress-strain tests and dynamic mechanical analysis (DMA) were used to evaluate the performances of the films. The results indicated that the glass-transition temperatures (Tg) and decomposition temperatures of the PI-silica hybrid films were higher than those of pristine PI. Tensile modulus, tensile strength of PI increased prominently in presence of small amount (1%) of silica in PI-silica hybrid. Keywords: Polyimide; Hybrid; Sol-gel process. © 2010 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. DOI: 10.3329/jsr.v2i1.2733                 J. Sci. Res. 2 (1), 99-107 (2010)  


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3007 ◽  
Author(s):  
M. H. Alaaeddin ◽  
S. M. Sapuan ◽  
M. Y. M. Zuhri ◽  
E. S. Zainudin ◽  
Faris M. AL-Oqla

Photovoltaic backsheets have considerable impact on the collective performance of solar cells. Material components should withstand certain temperatures and loads while maintaining high thermal stability under various weather conditions. Solar modules must demonstrate increased reliability, adequate performance, safety, and durability throughout the course of their lifetime. This work presents a novel solar module. The module consists of an innovative polyvinylidene fluoride-short sugar palm fiber (PVDF-SSPF) composite backsheet within its structure. It was electrically and thermally evaluated. The current-voltage characteristics (I-V) were obtained using the solar module analyzer, PROVA 210PV. A thermal evaluation was accomplished using a temperature device, SDL200. The thermal test consisted of two different assessments. The first targeted the surface and backsheet of the developed module to correlate their performance from within. The second assessment compared the thermal performance of the fabricated backsheet with the conventional one. Both tests were combined into a heatmap analysis to further understand the thermal performance. Results revealed that the developed module exhibited reasonable electrical efficiency, achieving appropriate and balanced I-V curves. PVDF-SSPF backsheets proved to be thermally stable by displaying less heat absorbance and better temperature shifts. Additional research efforts are highly encouraged to investigate other characteristics. To enhance performance, further analyses are needed such as the damp heat analysis, accelerated aging analysis, and heat dissipation phenomena.


2011 ◽  
Vol 393-395 ◽  
pp. 144-148 ◽  
Author(s):  
Meng Hou ◽  
Xue Gang Tang ◽  
Jin Zou ◽  
Rowan Truss

Polyvinylidene fluoride (PVDF)/Carbon nanotubes (CNTs) and PVDF/Organo-modified layered silicates (OMLSs) nano-composites were prepared by phase inversion technique. Maleic anhydride grafted PVDF (PVDF-MAH), were used to fine tune the interface. Transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) were used to characterize the nanocomposites. Elastic modulus and creep resistance of the PVDF nanocomposites were evaluated according to ASTM D-638. The results showed that both CNTs and OMLSs were good candidates to reinforce the PVDF and the addition of PVDF-MAH enhanced the interface between nanoparticles and PVDF, leading to further increase of mechanical property.


2008 ◽  
Vol 44 (1) ◽  
pp. 35-38 ◽  
Author(s):  
D. Galusek ◽  
Z. Lencés ◽  
P. Sajgalík ◽  
Ralf Riedel

The organosilicon precursors attract significant attention as substances, which upon heating in inert or reactive atmosphere convert directly to oxide or non-oxide ceramics, like nitrides, carbides, carbonitrides, boroncarbonitrides, oxycarbides, alons, etc. In characterisation, and in study of conversion of these polymers to ceramics thermal analysis plays an important role. The degree of cross-linking of the polymer vital for achievement of high ceramic yield is estimated with the use of thermal mechanical analysis (TMA). Decomposition of polymers and their conversion to ceramics is studied by the combination of differential thermal analysis (DTA), differential scanning calorimetry (DSC) thermogravimetry(TG), and mass spectrometry (MS). The use of these methods in study of the polymer-to-ceramic conversion is illustrated by case studies of a commercially available poly(allyl)carbosilane as the precursor of SiC, and a poly(hydridomethyl)silazane as the precursor of SiCN.


Sign in / Sign up

Export Citation Format

Share Document