scholarly journals Investigation on Compression Mechanical Properties of Rigid Polyurethane Foam Treated under Random Vibration Condition: An Experimental and Numerical Simulation Study

Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3385 ◽  
Author(s):  
Dacheng Qiu ◽  
Yannan He ◽  
Zhiqiang Yu

The mechanical failure properties of rigid polyurethane foam treated under random vibration were studied experimentally and by numerical simulation. The random vibration treatments were carried out in the frequency range of 5–500 Hz, 500–1000 Hz, and 1000–1500 Hz, respectively. The influence of the vibration frequency, mass block and acceleration on the mechanical performance of rigid polyurethane foam was further investigated by compression testing. The experimental results showed that the compression performance and energy absorption of foams decreased the least between 500–1000 Hz. In addition, in the 5–500 Hz range, the reduction rate of compression performance and energy absorption increased with the increase of the vibration mass block and acceleration. The resulting simulation indicated that the deformation degree of the sample was the most serious under the condition of 5–500 Hz. With the increase of deformation, the damage of the sample during the vibration process increased, which led to the decrease of compression property and energy absorption of rigid polyurethane foam. This further explained the variation mechanism of the compression test performance.

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4836
Author(s):  
Yoshimitsu Okazaki ◽  
Emiko Hayakawa ◽  
Kazumasa Tanahashi ◽  
Jun Mori

To evaluate mechanical performance properties of various types of cortical bone screw, cancellous bone screw, and locking bolt, we conducted torsional breaking and durability tests, screw driving torque tests into bone models, and screw pullout tests (crosshead speed: 10 mm/min) after driving torque tests. The 2° proof and rupture torques of a screw, which were estimated from torque versus rotational angle curves, increased with increasing core diameter of the screw. The durability limit of metallic screws obtained by four-point bending durability tests increased with increasing core diameter. The compressive, tensile, and shear strengths of the bone models used for the mechanical testing of orthopedic devices increased with increasing density of the bone model. The strength and modulus obtained for solid rigid polyurethane foam (SRPF) and cellular rigid polyurethane foam (CRPF) lay on the same straight line. Among the three strengths, the rate of increase in compressive strength with the increase in density was the highest. The maximum torque obtained by screw driving torque tests for up to 8.3 rotations (3000°) into the bone models tended to increase with increasing core diameter. In particular, the maximum torque increased linearly with increasing effective surface area of the screw, as newly defined in this work. The maximum pullout load increased linearly with increasing number of rotations and mechanical strength of the bone model. Screws with low driving torque and high pullout load were considered to have excellent fixation and are a target for development.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5475
Author(s):  
Agnė Kairytė ◽  
Sylwia Członka ◽  
Renata Boris ◽  
Sigitas Vėjelis

In the current study, rigid polyurethane foam (PUR) was modified with 10–30 wt.% sunflower press cake (SFP) filler, and its effect on performance characteristics—i.e., rheology, characteristic foaming times, apparent density, thermal conductivity, compressive strength parallel and perpendicular to the foaming directions, tensile strength, and short-term water absorption by partial immersion—was evaluated. Microstructural and statistical analyses were implemented as well. During the study, it was determined that 10–20 wt.% SFP filler showed the greatest positive impact. For instance, the thermal conductivity value improved by 9% and 17%, respectively, while mechanical performance, i.e., compressive strength, increased by 11% and 28% in the perpendicular direction and by 43% and 67% in the parallel direction. Moreover, tensile strength showed 49% and 61% increments, respectively, at 10 wt.% and 20 wt.% SFP filler. Most importantly, SFP filler-modified PUR foams were characterised by two times lower water absorption values and improved microstructures with a reduced average cell size and increased content in closed cells.


Mechanika ◽  
2021 ◽  
Vol 27 (6) ◽  
pp. 442-450
Author(s):  
Kun YANG ◽  
Yunjie SHA ◽  
Tao YU

In this paper, the quasi-static three-point bending experiments are carried out to study the deformation behavior of square tube and square tube filled with foam aluminum. The difference of bending deformation mode, loading characteristics and energy absorption efficiency between tube and foam aluminum filled tube is compared. And the influence of adhesive between the foam aluminum core and the tube wall on the bending deformation of square tube filled with foam aluminum is analyzed. Based on the bending super beam element model of tube structure, the relationship between the moment and rotation of square tube filled with foam aluminum under transverse static loading is analyzed. And the formula for calculating the moment and rotation angle of square tube filled with foam aluminum at three-point bending is obtained. In order to compare the simulation results, theoretical calculation results and experimental results of quasi-static bending, the three-point bending deformation of square tube and filled with foam aluminum under quasi-static and impact loading is simulated by finite element method. The results show that the filling of foam aluminum can improve the bearing capacity and energy absorption performance of the square tube structure. Under the bending load, the deformation degree of the bearing section is greatly reduced, which increases the bearing capacity of the structure and increases the stability of its bending resistance.


2014 ◽  
Vol 875-877 ◽  
pp. 534-541 ◽  
Author(s):  
Chawalit Thinvongpituk ◽  
Nirut Onsalung

In this paper, the experimental investigation of polyurethane (PU) foam-filled into circular aluminum tubes subjected to axial crushing was presented. The purpose of this study is to improve the energy absorption of aluminium tube under axial quasi-static load. The aluminium tube was made from the AA6063-T5 aluminium alloy tubes. Each tube was filled with polyurethane foam. The density of foam was varied from 100, 150 and 200 kg/mP3P including with empty tube. The range of diameter/thickness (D/t) ratio of tube was varied from 15-55. The specimen were tested by quasi-static axial load with crush speed of 50 mm/min using the 2,000 kN universal testing machine. The load-displacement curves while testing were recorded for calculation. The mode of collapse of each specimen was analyzed concerning on foam density and the influence of D/t ratio. The results revealed that the tube with foam-filled provided significantly increment of the energy absorption than that of the empty tube. While the density of foam and D/t ratios increase, the tendency of collapse mode is transformed from asymmetric mode to concertina mode.


Sign in / Sign up

Export Citation Format

Share Document