scholarly journals Mechanical Performance of Metallic Bone Screws Evaluated Using Bone Models

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4836
Author(s):  
Yoshimitsu Okazaki ◽  
Emiko Hayakawa ◽  
Kazumasa Tanahashi ◽  
Jun Mori

To evaluate mechanical performance properties of various types of cortical bone screw, cancellous bone screw, and locking bolt, we conducted torsional breaking and durability tests, screw driving torque tests into bone models, and screw pullout tests (crosshead speed: 10 mm/min) after driving torque tests. The 2° proof and rupture torques of a screw, which were estimated from torque versus rotational angle curves, increased with increasing core diameter of the screw. The durability limit of metallic screws obtained by four-point bending durability tests increased with increasing core diameter. The compressive, tensile, and shear strengths of the bone models used for the mechanical testing of orthopedic devices increased with increasing density of the bone model. The strength and modulus obtained for solid rigid polyurethane foam (SRPF) and cellular rigid polyurethane foam (CRPF) lay on the same straight line. Among the three strengths, the rate of increase in compressive strength with the increase in density was the highest. The maximum torque obtained by screw driving torque tests for up to 8.3 rotations (3000°) into the bone models tended to increase with increasing core diameter. In particular, the maximum torque increased linearly with increasing effective surface area of the screw, as newly defined in this work. The maximum pullout load increased linearly with increasing number of rotations and mechanical strength of the bone model. Screws with low driving torque and high pullout load were considered to have excellent fixation and are a target for development.

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5475
Author(s):  
Agnė Kairytė ◽  
Sylwia Członka ◽  
Renata Boris ◽  
Sigitas Vėjelis

In the current study, rigid polyurethane foam (PUR) was modified with 10–30 wt.% sunflower press cake (SFP) filler, and its effect on performance characteristics—i.e., rheology, characteristic foaming times, apparent density, thermal conductivity, compressive strength parallel and perpendicular to the foaming directions, tensile strength, and short-term water absorption by partial immersion—was evaluated. Microstructural and statistical analyses were implemented as well. During the study, it was determined that 10–20 wt.% SFP filler showed the greatest positive impact. For instance, the thermal conductivity value improved by 9% and 17%, respectively, while mechanical performance, i.e., compressive strength, increased by 11% and 28% in the perpendicular direction and by 43% and 67% in the parallel direction. Moreover, tensile strength showed 49% and 61% increments, respectively, at 10 wt.% and 20 wt.% SFP filler. Most importantly, SFP filler-modified PUR foams were characterised by two times lower water absorption values and improved microstructures with a reduced average cell size and increased content in closed cells.


Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3385 ◽  
Author(s):  
Dacheng Qiu ◽  
Yannan He ◽  
Zhiqiang Yu

The mechanical failure properties of rigid polyurethane foam treated under random vibration were studied experimentally and by numerical simulation. The random vibration treatments were carried out in the frequency range of 5–500 Hz, 500–1000 Hz, and 1000–1500 Hz, respectively. The influence of the vibration frequency, mass block and acceleration on the mechanical performance of rigid polyurethane foam was further investigated by compression testing. The experimental results showed that the compression performance and energy absorption of foams decreased the least between 500–1000 Hz. In addition, in the 5–500 Hz range, the reduction rate of compression performance and energy absorption increased with the increase of the vibration mass block and acceleration. The resulting simulation indicated that the deformation degree of the sample was the most serious under the condition of 5–500 Hz. With the increase of deformation, the damage of the sample during the vibration process increased, which led to the decrease of compression property and energy absorption of rigid polyurethane foam. This further explained the variation mechanism of the compression test performance.


2014 ◽  
Vol 39 (2) ◽  
pp. 127-138 ◽  
Author(s):  
Y. Zhou ◽  
H. H. Xiao ◽  
J. H. Sun ◽  
X. N. Zhang ◽  
W. G. Yan ◽  
...  

2014 ◽  
Vol 1030-1032 ◽  
pp. 241-245 ◽  
Author(s):  
Yan Wei Li

In this paper, the effect of C3H6N6modified by imidazolium based Ionic Liquid 1-butyl-methylimidazolium hexafluorophosphate ([BMIM]PF6) on polyurethane rigid foam flame retardant properties was conducted.The results show that the flame retardant properties of C3H6N6 modified with Ionic Liquid significantly increased and the LOI increased form 22.3 to 24.5. In the modification process, the ionic liquid mass have a very noticeable effect to the flame retardant property and when [BMIM]PF6 and C3H6N6 in quality was 4:6, Fire-retardant effect was best.Compared with the prior to the modification, C3H6N6 modified can increase effective Flame resistance of materials, horizontal burning speed from 67.6mm/min down to 33.4mm/min.Thermal degradation data show that C3H6N6 modified could improve initial decomposition temperature and reminder yield of rigid polyurethane foam,and then heat release reduced, the decomposition controlled,thermal stability increased.


Sign in / Sign up

Export Citation Format

Share Document