scholarly journals Study of the Degree of Cure through Thermal Analysis and Raman Spectroscopy in Composite-Forming Processes

Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3991 ◽  
Author(s):  
Juan A. García-Manrique ◽  
Bernabé Marí ◽  
Amparo Ribes-Greus ◽  
Llúcia Monreal ◽  
Roberto Teruel ◽  
...  

The curing of composite materials is one of the parameters that most affects their mechanical behavior. The inspection methods used do not always allow a correct characterization of the curing state of the thermosetting resins. In this work, Raman spectroscopy technology is used for measuring the degree of cure. The results are compared with conventional thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), and scanning electron microscope (SEM). Carbon fiber specimens manufactured with technologies out of autoclave (OoA) have been used, with an epoxy system Prepreg System, SE 84LV. The results obtained with Raman technology show that it is possible to verify the degree of polymerization, and the information is complementary from classical thermal characterization techniques such as TGA and DSC; thus, it is possible to have greater control in curing and improving the quality of the manufactured parts.

2019 ◽  
pp. 089270571987822
Author(s):  
Saud Aldajah ◽  
Mohammad Y Al-Haik ◽  
Waseem Siddique ◽  
Mohammad M Kabir ◽  
Yousef Haik

This study reveals the enhancement of mechanical and thermal properties of maleic anhydride-grafted polypropylene (PP- g-MA) with the addition of nanocrystalline cellulose (NCC). A nanocomposite was manufactured by blending various percentages of PP, MA, and NCC nanoparticles by means of a twin-screw extruder. The influence of varying the percentages of NCC on the mechanical and thermal behavior of the nanocomposite was studied by performing three-point bending, nanoindentation, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier-transform infrared (FTIR) spectroscopy tests. The novelty of this study stems on the NCC nanoparticles and their ability to enhance the mechanical and thermal properties of PP. Three-point bending and nanoindentation tests revealed improvement in the mechanical properties in terms of strength, modulus, and hardness of the PP- g-MA nanocomposites as the addition of NCC increased. SEM showed homogeneity between the mixtures which proved the presence of interfacial adhesion between the PP- g-MA incorporated with NCC nanoparticles that was confirmed by the FTIR results. DSC and TGA measurements showed that the thermal stability of the nanocomposites was not compromised due to the addition of the coupling agent and reinforced nanoparticles.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Deshraj Singh ◽  
Pawan Kumar ◽  
Jitendra Singh ◽  
Dharm Veer ◽  
Aravind Kumar ◽  
...  

AbstractComposites proton conducting material based on cesium dihydrogen phosphate (CDP) doped with zirconium oxide (1−x) CsH2PO4/x ZrO2 were synthesized with different concentration having in the range such as x = 0.1, 0.2, 0.3 and 0.4 by ball milling method. The prepared solid acid composites were dried at 150 °C for 6 h. Structural and thermal characterization of solid acid composite proton electrolytes were carried out by X-ray diffractometer, Fourier transform infrared spectroscopy, and Raman spectroscopy respectively. Phase transition of the prepared materials was carried out by using differential scanning calorimetry and conductivity was measured by LC Impedance meter in the range 1 Hz to 400 kHz. The ionic conductivity of ZrO2 doped CsH2PO4 (CDP) was increased up to 1.3 × 10–2 S cm−1 at the 280 °C under environment atmospheric humidification which showed high stability as compared to pure CsH2PO4 (CDP). This obtaining result would be useful for establishing and design the next generation fuel cell.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Richard Jumeau ◽  
Patrice Bourson ◽  
Michel Ferriol ◽  
François Lahure ◽  
Marc Ponçot ◽  
...  

The possibilities of applications of vibrational spectroscopy techniques (Raman spectroscopy) in the analysis and characterization of polymers are more and more used and accurate. In this paper, our purpose is to characterize Low Density Poly(Ethylene) (LDPE) grades by Raman spectroscopy and in particular with CH2 Raman vibration modes. With temperature measurements, we determine different amorphous and crystalline Raman assignments. From these results and on the basis of the evolution of CH2 bending Raman vibration modes, we develop a phenomenological model in correlation with Differential Scanning Calorimetry and in particular with crystalline lamella thickness determination.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Emerson C. G. Campos ◽  
Cristiano Zanlorenzi ◽  
Bruno F. Nowacki ◽  
Gabriela M. Miranda ◽  
Denis A. Turchetti ◽  
...  

This work reports the synthesis and characterization of a conjugated polymer based on fluorene and terpyridine, namely, poly[(9,9-bis(3-((S)-2-methylbutylpropanoate))fluorene-alt-6,6′-(2,2′:6′,2′′-terpyridin-6-yl)] (LaPPS71). The structure was characterized by 1H and 13C nuclear magnetic resonance (NMR) and Fourier-transform infrared (FTIR) spectroscopy. The molar mass was measured by gel permeation chromatography (GPC). As thermal characterization, the glass transition temperature (Tg) was measured by differential scanning calorimetry (DSC). The polymer structure contains two sites capable of complexation with metallic ions, affording the possibility of obtainment of independent or electronically coupled properties, depending on the complexation site. The photophysical properties were fully explored in solution and solid state, presenting ideal results for the preparation of various metallopolymers, in addition to potential application as a metamaterial, due to the presence of the chiral center in the side chains of the polymer.


2019 ◽  
Vol 19 (01) ◽  
pp. 1850044
Author(s):  
K. Ramachandran ◽  
P. Navaneethakrishnan ◽  
M. Sivaraja

The homogeneous and substantial dispersion of nanoparticles into base fluids is vital since the final properties of any nanolubricant are estimated by their quality of stability. This paper addresses the effect of NiO nanoparticles dispersion into SN500 lubricant oil and its nonisothermal thermo stability. The dispersion of NiO nanoparticles is achieved by ultrasonication method. The thermo stability is estimated by Thermo Gravimetric Analysis (TGA), Differential Thermal Analysis (DTA) and Differential Scanning Calorimetry (DSC). The result shows that the thermo stability of base fluid enhances up to 0.3[Formula: see text]wt.% particle concentration then it decreases due to agglomeration of dispersed nanoparticles. The findings recommend that 0.1[Formula: see text]wt.% and 0.3[Formula: see text]wt.% of NiO-nanolubricant can be used for the temperature-dependent applications up to 200∘C.


2016 ◽  
Vol 3 ◽  
pp. 47-50
Author(s):  
Birgit Neitzel ◽  
Florian Aschermayer ◽  
Milan Kracalik ◽  
Sabine Hild

Polymers have various interesting properties, which depend largely on their inner structure. One way to influence the macroscopic behaviour is the deformation of the polymer chains, which effects the change in microstructure. For analyzing the microstructure of non-deformed and deformed polymer materials, Raman spectroscopy as well as differential scanning calorimetry (DSC) were used. In the present study we compare the results for crystallinity measurements of deformed polymers using both methods in order to characterize the differences in micro-structure due to deformation. The study is ongoing, and we present the results of the first tests.


2006 ◽  
Vol 05 (3) ◽  
pp. 8-20
Author(s):  
José Carlos Oliveira SANTOS ◽  
Lionete Dantas NUNES ◽  
Sylvia Berenice NÓBREGA ◽  
Dantas José Pires PUZINSKI ◽  
Antonio Gouveia SOUZA

A thermal analysis has been applied to characterization of food and food products. Taking into account the problems of desertification and agricultural practices able to provide income to the population at the semi-arid region of Northeastern Brazil, this work presents the results of the chemical, thermal and kinetic characterization by thermogravimetry and differential scanning calorimetry of the seed derivatives of favelone (cnidoscolus quercifolius), aiming at the application of these materials as an alternative of food source for animals and for the human population at this brazilian region.


e-Polymers ◽  
2006 ◽  
Vol 6 (1) ◽  
Author(s):  
J. L. Feng ◽  
C. Y. Yue ◽  
K. S. Chian

AbstractThis project aims to develop and characterize a series of bismaleimide (BMI) polymers based on maleic anhydride and aliphatic-ether diamines. The effects of varying the chain length of aliphatic-ether diamines on the resultant bismaleimide systems were evaluated so that their suitability for microelectronics applications could be evaluated. The synthetic reaction and properties of the bismaleimide materials were investigated using Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), Thermo- Gravimetric Analysis (TGA), Dielectric Thermal Analysis (DEA) and rheometry. Results showed that thermal, dielectric and rheological properties were all affected by the main chain length of BMI. The magnitude of the dielectric constant at 100 kHz increases with the increasing chain length. The curing peak temperature, curing heat and degradation temperature of BMI, all decrease with the increasing chain length.


2019 ◽  
Vol 282 ◽  
pp. 01001 ◽  
Author(s):  
Ákos Lakatos ◽  
Anton Trnik

Nowadays, the application of thermal insulation materials both by the existing and by new buildings is one of the most important actions in order to reduce the energy loss of buildings. Besides the use of the conventional insulations (plastic foams and wool materials) aerogel is one of the most promising thermal insulation material. Aerogels, one of the lightest solid materials available today, are manufactured through the combination of a polymer with a solvent forming a gel. For buildings the fibre reinforced ones are the mainly used types. It is produced by adding the liquid-solid solution to the fibrous batting. In this paper changes in the thermal performance of the aerogel blanket will be followed after thermal annealing. The samples will be put under isothermal heat treatments at 70 °C for 6 weeks, as well as they will be put under thermal treatment at higher temperatures (from 70 °C till 210 °C) for 1 day. The changes in the thermal conductivity will be followed by Holometrix Lambda heat flow meter, as well as, Differential Scanning Calorimetry results will be presented. From the measured values, thermal properties will be calculated. In this paper we will try to clarify the role played by thermal annealing in thermal diffusivity.


Sign in / Sign up

Export Citation Format

Share Document