scholarly journals Effects of 10-MDP Based Primer on Shear Bond Strength between Zirconia and New Experimental Resin Cement

Materials ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 235 ◽  
Author(s):  
Francesco Valente ◽  
Luan Mavriqi ◽  
Tonino Traini

To date, numerous materials in the dental field are marketed to ensure stable adhesive cementation of zirconia ceramics (Y-TZP). The aims of this study were to assess the shear bond strength of the new experimental cement Surgi Dual Flo’ Zr to Y-TZP compared to Panavia V5 cement, and to evaluate the effect of 10-MDP (10-methacryloyloxydecyl dihydrogen phosphate) containing primer on their bond strength. Twenty composite cylinders and Y-TZP disks were adhesively luted and divided into four groups based on cement type used and application or not of 10-MDP. The groups (n = 5 each) were S 10MDP (Surgi Dual Flo’ Zr with 10-MDP); S no 10MDP (Surgi Dual Flo’ Zr without 10-MDP); P 10MDP (Panavia V5 with 10-MDP); P no 10MDP (Panavia V5 without 10-MDP). Maximum load resistance (ML) and shear bond strength (SBS) were tested and mode of failure qualitative documented via scanning electron microscopy. The data were analyzed with one-way ANOVA, Holm-Sidak method, and Bayesian analysis. ML and SBS were significantly higher in S 10MDP than in S no 10MDP; and in P 10MDP than in P no 10MDP (p < 0.05). No significant differences were found between S 10MDP and P 10MDP; S no 10MDP and P no 10MDP (p > 0.05). Cohesive, adhesive, and mixed failure occurred among the groups. Bond strength between the experimental resin-based cement and Y-TZP was adequate for clinical application when 10-MDP was added. 10-MDP containing primer was effective improving the bond strength to Y-TZP more than the different type of resinous cement.

2016 ◽  
Vol 64 (2) ◽  
pp. 140-147
Author(s):  
Gilvan Cutrim TAVARES ◽  
Renan Macedo Cutrim TAVARES ◽  
Milton Edson MIRANDA ◽  
Cecilia Pedroso TURSSI ◽  
Roberta Tarkany BASTING ◽  
...  

ABSTRACT Objective This study evaluated the shear bond strength (SBS) of lithium disilicate glass (LDG) ceramic bonded to a zirconia (Y-TZP), using different cementation strategies. Methods LDG ceramic cylinders were cemented to Y-TZP structure according to the following adhesive system (AS)/resin cement (RC) (n = 15): U- self-adhesive dual-cure RC; AMBAR- AS containing phosphate monomers (PM) + dual-cure RC; group SBU: PM+Silane/AS + light-cure RC; group ALLB: PM/AS + dual-cure RC. Specimens were subjected to SBS in a universal testing machine (0.5 mm/min). Data (MPa) were subjected to one-way ANOVA and Tukey's test (α = 0,05). Results The groups SBU and ALLB had significantly higher SBS than those provided by the group U, in which the lowest values were observed. For the AMBAR group, intermediate SBS values were found, which did not differ significantly from the values observed in the other groups. Conclusion Regardless of resins cement, the use of adhesives containing phosphate monomers provided superior bond strength than self-adhesive cement.


2018 ◽  
Vol 29 (3) ◽  
pp. 275-281 ◽  
Author(s):  
Arthur Magno Medeiros de Araújo ◽  
Ana Beatriz do Nascimento Januário ◽  
Dayanne Monielle Duarte Moura ◽  
João Paulo Mendes Tribst ◽  
Mutlu Özcan ◽  
...  

Abstract This study evaluated the effectiveness of a multi-mode adhesive (SBU-Scotch Bond Universal/3M) as a substitute for silica coating and silane application on the bonding of zirconia ceramics to resin cement. One-hundred and twenty sintered zirconia ceramic blocks (5 x 5 x 5 mm) were obtained, finished by grounding with silicon carbide paper (#600, #800, #1000 and #1200) and randomly divided into 12 groups (n=10) in accordance with the factors “surface treatment” (ScSi - silicatization + silanization; ScSBU - silicatization + SBU; SBU - SBU without photoactivation and SBUp - SBU photoactivated) and “ceramic” (Lava / 3M ESPE, Ceramill Zirconia / Amann Girrbach and Zirkonzahn / Zirkonzahn). Dual resin cement cylinders (RelyX Ultimate/3M ESPE) were subsequently produced in the center of each block using a silicon matrix (Ø=2 mm, h=5 mm) and photoactivated for 40 s (1200 mW/cm2). The samples were stored for 30 days in distilled water (37ºC) and submitted to shear bond strength test (1 mm/min, 100 KgF). Data (MPa) were analyzed under ANOVA (2 levels) and Tukey test (5%). Complementary analyzes were also performed. ANOVA revealed that only the factor “surface treatment” was significant (p=0.0001). The ScSi treatment (14.28A) promoted statistically higher bond strength values than the other ScSBU (9.03B), SBU (8.47B) and SBUp (7.82B), which were similar to each other (Tukey). Failure analysis revealed that 100% of the failures were mixed. The silica coating followed by the silanization promoted higher bond strength values of resin cement and ceramic, regardless of the zirconia ceramic or SBU.


2017 ◽  
Vol 42 (3) ◽  
pp. 335-341 ◽  
Author(s):  
AE Llerena-Icochea ◽  
RM Costa ◽  
AFS Borges ◽  
JFS Bombonatti ◽  
AY Furuse

SUMMARY Objective: The objective of this study was to evaluate the influence of adhesives with different 10-MDP concentrations on the shear bond strength of a resin cement to zirconia. Methods and Materials: Six experimental adhesives were prepared with the following composition: camphorquinone, 1,2-diaminobenzene, butylhydroxytoluene, diphenyliodonium hexafluorophosphate, 2-hydroxyethyl methacrylate triethylene glycol dimethacrylate, ethoxylated bisphenol A glycol dimethacrylate, urethane dimethacrylate, bisphenol A diglycidyl methacrylate, and ethanol. The 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) monomer was added at 0wt%, 3wt%, 6wt%, 9wt%, 12wt%, or 15wt%. Three commercially available adhesives were evaluated: Single Bond Universal, Single Bond 2, and Signum Zirconia Bond. Resin cement cylinders made with RelyX Ultimate were bonded to yttria-stabilized tetragonal zirconia polycrystal with one of the evaluated adhesives and were subjected to the shear bond strength evaluation. Failure modes were analyzed with a stereoscopic loupe. Statistical analyses were performed with one-way analysis of variance and the Tukey's Honestly Significant Difference test (α=0.05). Pearson's was used to correlate the percentage of 10-MDP in the experimental adhesives and shear bond strength. Results: There were significant differences between adhesives (p&lt;0.00001). The highest shear bond strength values were obtained with the Signum Zirconia Bond and Single Bond Universal. Single Bond 2 showed the lowest values. There were no differences between experimental adhesives. All groups showed adhesives failures. A nonlinear correlation was found between bond strength and percentage of 10-MDP in experimental adhesives (r=0.872). Conclusions: The commercially available adhesives indicated for bonding to zirconia showed the highest bonding values.


2019 ◽  
Vol 22 (2) ◽  
pp. 275-280
Author(s):  
Beatriz Curvello de Mendonça ◽  
William Matthew Negreiros ◽  
Marcelo Giannini

Objective: to evaluate the effect of aluminum oxide sandblasting (AOS), argon plasma application (APL) and their combination (AOS+APL) on the shear bond strength (SBS) of dual-cure resin cement (Panavia F 2.0, Kuraray Noritake) to two zirconiabased ceramics (Lava, 3M ESPE and Katana, Kuraray Noritake). Material and Methods: One hundred twenty zirconia plates (13 mm in length X 5 mm in width X 1 mm in thickness) were prepared and treated according to the following treatments: 1- AOS, 2- APL,3- AOS+APL and 4- no treatment (control). After treatments, resin cement cylinders (1.4 mm in diameter x 1 mm in height) bonded to zirconia surface were obtained by filling up the silicon matrix. The shear bond test was performed following storage of the samples for 24 hours and one year. Bond strength values were recorded in MPa and the data were analyzed by three-way ANOVA and Tukey post-hoc test (preset alpha of 0.05). Results: In general, AOS and AOS+APL showed the higher SBS. After one-year storage, SBS of the resin cement to the Katana zirconia did not reduce, regardless of the zirconia surface treatment. Conclusion: AOS alone was able to increase the SBS of the resin cement to both zirconia ceramics compared to control and SBS remained stable after one year depending on type of zirconia ceramic.KeywordsAluminum Oxide; Ceramics; Plasma; Resin Cements


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1126
Author(s):  
Tine Malgaj ◽  
Tadej Mirt ◽  
Andraž Kocjan ◽  
Peter Jevnikar

Thin, non-retentive, monolithic restorations fabricated from novel translucent zirconia ceramics are widely used in contemporary dentistry. Because of the chemical inertness of zirconia, debonding of such restorations remains the main clinical complication. Limited evidence on the bonding performance of novel translucent zirconia exists; therefore, the present study aimed to evaluate, in vitro, the shear-bond strength (SBS) of translucent zirconia modified with a nanostructured alumina coating (NAC). The SBS of resin cement to translucent zirconia, materials containing 3, 4 or 5 mol.% of yttria modified with NAC, was measured and related to airborne-particle abraded (APA) zirconia surfaces. Half of each of the specimen groups (n = 20) were subjected to 37,500 thermocycles in water. In addition, to evaluate the effect of NAC on thin translucent zirconia discs (n = 10), the translucency parameter (TP) was measured and compared with APA. The results were statistically analyzed using a t-test and one-way ANOVA. NAC provided higher resin-zirconia SBS compared to APA, not affecting the zirconia optical properties. APA, on the other hand, lowered TP for all types of zirconia. NAC did not impair the mechanical or optical properties of translucent zirconia materials and should be regarded as a zirconia pretreatment alternative to APA.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3922
Author(s):  
Francisco da Silva Araújo Milagres ◽  
Dauro Douglas Oliveira ◽  
Giordani Santos Silveira ◽  
Emanuelle de Fátima Ferreira Oliveira ◽  
Alberto Nogueira da Gama Antunes

The aim of this study was to evaluate the shear bond strength of orthodontic tubes adhered to ceramics with the Transbond™ XT bonding resin (3M, Maplewood, MN, USA) while varying the surface treatment. Then, the adhesive remaining index (ARI) was verified, and the representative fracture patterns were evaluated via scanning electron microscopy. Forty-eight zirconia blocks were divided into three groups, varying the number of layers of the 10-methacryloyloxy-decyl dihydrogen phosphate (MDP) primer: one, two, or three applications. In addition, 16 lithium disilicate IPS E.max ceramic disks (Ivoclar Vivadent, Schaan, Liechtenstein) were conditioned with 10% hydrofluoric acid for 20 s and underwent a single-layer primer application regimen. The four groups were further stratified to undergo bond testing after either 24 h (control) or 5000 cycles in a thermocycling machine. A shear bond strength test was performed (0.5 mm/min), and the MPa values obtained were submitted to a two-way analysis of variance and Tukey’s test. There was no statistical difference among the control group ceramics that received the varying surface treatments. After thermocycling, it was verified that both the E.max disks and the zirconia ceramics with three primer applications obtained the highest bond strength values. In the 24 h groups, a total displacement of the resin from the orthodontic tubes was observed (ARI of 1). After thermocycling, the highest prevalence of an ARI of 5 (adhesive failure) was observed among the zirconia ceramics with single-coat primer application, followed by those with triple-coat primer application (mixed failure). Three applications of the MDP-containing ceramic primer achieved the best result in the present study. Zirconia surface should be treated with three coats of MDP primer to achieve a level of bond strength similar to silica-rich phase ceramic.


2021 ◽  
Vol 12 (4) ◽  
pp. 62
Author(s):  
Tatsuya Kimura ◽  
Yujin Aoyagi ◽  
Norimasa Taka ◽  
Mitsugu Kanatani ◽  
Katsumi Uoshima

Zirconia has been used as a prosthesis material for over a decade because of its excellent mechanical properties and esthetics. The surface treatment for zirconia generally involves sandblasting and the application of primers for favorable bond strength between the surface and resin. However, sandblasting causes the microcracking and chipping of the zirconia surface. To overcome these challenges, the metallization of the zirconia surface was performed. Ti and Au were sputtered on yttria stabilized zirconia (YSZ) disks and heated to 800 °C for 15 min in air. These disks were bonded to stainless-steel rods using resin cement. Then, shear bond strength tests were performed using an Instron-type testing machine. The shear bond strength of the Ti sputtering group was significantly higher than that of the other groups. According to the results of X-ray photoelectron spectroscopy and electron probe microanalysis, the Ti-sputtered YSZ surface contained both sub-titanium oxide and titanium oxide before heating. Sub-titanium oxide was converted to titanium oxide by heating. These results suggest that metallization using Ti is effective for zirconia surface treatment to improve the shear bond strength between YSZ and resin cement. This metallization technique for YSZ has potential in clinical applications.


Sign in / Sign up

Export Citation Format

Share Document