scholarly journals Realizing a Novel Friction Stir Processing-Enabled FWTPET Process for Strength Enhancement Using Firefly and PSO Methods

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 728
Author(s):  
Senthil Kumaran S ◽  
Jayakumar Kaliappan ◽  
Kathiravan Srinivasan ◽  
Yuh-Chung Hu ◽  
Sanjeevikumar Padmanaban ◽  
...  

The friction welding of tube to tube plate using an external tool (FWTPET) is widely deployed in several industrial applications, such as aerospace, automotive, and power plants. Moreover, for achieving a better tensile strength and hardness in the weld zone, the friction stir processing (FSP) technique was incorporated into the FWTPET process for joining aluminum alloys (AA6063 tube, AA6061 tube plate). Furthermore, it has to be noted that FWTPET was applied for joining the AA6063 tube to the AA6061 tube plate, and FSP was deployed for reinforcing the weld zone with carbon nanotube (CNT) and silicon nitride (Si3N4) particles, thereby attaining the desirable mechanical properties. Subsequently, the Taguchi L25 orthogonal array was used for identifying the most influential input and output FWTPET + FSP process parameters. Furthermore, particle swarm optimization (PSO) and the firefly algorithm (FFA) were deployed for determining the optimized input and output FWTPET + FSP process parameters. The input process parameters include CNT, Si3N4, rotational tool speed, and depth. Furthermore, the tensile strength of the welded joint was considered as the output process parameter. The process parameters predicted by PSO and FFA were compared with the experimental values. It was witnessed that deviation between the predicted and experimental values was minimal. Moreover, it was found that FFA provided a superior tensile strength prediction than PSO.

2012 ◽  
Vol 232 ◽  
pp. 3-7
Author(s):  
Akinlabi Esther Titilayo ◽  
Akinlabi Stephen Akinwale

This paper reports the effects of processing parameters on defects formed during friction stir processing of 6082-T6 Aluminium Alloy. The plates were processed by varying the feed rate between 50 and 250 mm/min, while the rotational speed was varied between 1500 and 3500 rpm to achieve the best result. It was observed that the sheets processed at the highest feed rate considered in this research resulted in wormhole defect. These processed samples with defects were correlated to the tensile results and it was found that the Ultimate Tensile Strength (UTS) of these samples was relatively low compared to other samples without defects.


2019 ◽  
Vol 28 ◽  
pp. 096369351986770 ◽  
Author(s):  
Rajesh Kumar Bhushan ◽  
Deepak Sharma

Friction stir welding (FSW) offers significant advantage when compared with fusion joining process such as no shield gas or flux are used, no harmful gases are produced, thereby making the FSW environmentally friendly. In this work, an experimental approach has been used for studying and optimizing the FSW process, applied on AA6082/SiC/10P composite plates. In particular, the effect of process parameters on ultimate tensile strength (UTS) of FSW joint has been investigated. The UTS of FSW joints is affected by FSW parameters. The FSW of the AA6082/SiC/10P composite plates was carried out with different combinations of FSW parameters. The experiments were conducted according to the Taguchi’s L9 orthogonal array. Taguchi method of designing the experiments was used for optimization of the FSW parameters. The signal to noise ratio and analysis of variance were used to determine the effects of FSW parameters on the UTS of the welded joints. The optimum FSW parameters for the maximum UTS were found to be the tool rotation speed of 1800 r/min, the welding speed of 100 mm/min and the tool tilt angle of 2°. UTS increased by 24.5% when FSW was carried out at optimum process parameters as compared to initial FSW parameters. Results have shown good agreement between the predicted and experimental values of UTS. High tensile strength is required for use of FSWed AA6082/SiC/10P composite joints in aerospace industry.


2017 ◽  
Vol 67 (1) ◽  
pp. 101-118 ◽  
Author(s):  
Dakarapu Rao Santha ◽  
Nallu Ramanaiah

Abstract Friction stir processing (FSP) is solid state novel technique developed to refine microstructure and to improve the mechanical properties and be used to fabricate the aluminium alloy matrix composites. An attempt is made to fabricate AA6061/TiB2 aluminium alloy composite (AMCs) and the influence of process parameters like rotational speed, transverse feed, axial load and percentage reinforcement on microstructure and mechanical properties were studied. The microstructural observations are carried out and revealed that the reinforcement particles (TiB2) were uniformly dispersed in the nugget zone. The Tensile strength and Hardness of composites were evaluated. It was observed that tensile strength, and hardness were increased with increased the rotational speed and percentage reinforcement of particles. The process parameters were optimized using Taguchi analysis (Single Variable) and Grey analysis (Multi Variable). The most influential parameter was rotational speed in single variable method and multi variable optimization method. The ANOVA also done to know the percentage contribution of each parameter.


Author(s):  
Senthil Kumar Velukkudi Santhanam ◽  
Jeffrin Michael Gnana Anbalagan ◽  
Shanmuga Sundaram Karibeeran ◽  
Dhanashekar Manickam ◽  
Ramaiyan Sankar

Abstract Friction stir processing (FSP) method is a solid-state technique used for microstructural alteration and enhancing mechanical properties of sheet metals and as-cast materials. Aluminium, brass, copper, steel, tin, nickel, magnesium and titanium are the widely used materials in friction stir processing. Even though magnesium has low density compared to aluminium, only few reports are made on magnesium. Two stage of process was carried out on the experiment to obtain fine grain refinement and improved strength. First, Cryo-rolling processing on 6mm thickness AZ31B alloy at constant roller power, roller rotation speed, strength coefficient and strain exponent. AZ31B alloy is dipped in liquid nitrogen for certain period and rolled in it’s cold state. Number of passes into roller was same for 9 samples. Cryo-rolled AZ31B is used as sample for the second stage i.e., Friction stir processing. FSPed material produce refined grain structure, micro-structurally modified cast alloys by alloying specific elements, and improvement in material strength. Based on Process parameters the properties of the material alters. Friction stir processing was performed on cryo-rolled AZ31B magnesium alloy with various processing parameters. The effect of process parameters (tool pin geometry, tool rotational speed and tool traverse speed) on two responses namely ultimate tensile strength and micro-hardness values were measured. The tool used for Friction stir processing is H13 high carbon steel with hardness upto 60 HRC. Tool pin geometry used for Friction stir processing are square, cylinder and tapered. The processed materials are cut using wire cut EDM as per ASTM standards to measure the ultimate tensile strength and hardness. Universal tester and Vickers hardness tester were used to measure the tensile strength and hardness of the Friction stir processed sample. Most of the research has been published on cryo-rolled and FSP experiments separately. In this work, a combination of these two process is developed for improved tensile strength, hardness, and ultrafine grain refinement. A multi-response optimization was performed using grey relation analysis (GRA) to find out the optimum combination of the process parameters for maximum ultimate tensile strength hardness. Analysis of variance (ANOVA) and F-test were performed to determine the most significant parameters at a 95% confidence level. The corrosion test was made on Friction stir processed cryo-rolled AZ31B alloy for every process parameters. Salt spray test was done as per ASTM standard to find the corrosion rate. The corrosion rate for Friction stir processed cryo-rolled material is less (at optimal condition). The microstructure analysis was done on the samples using a Scanning Electron Microscopy. For clear view of grains the material is subjected to polishing and etching. The etchant used on the material is Picral + Acetic acid + Hydrogen peroxide. Fine grain size was obtained on the Friction Stir processed Cryo-rolled AZ31B magnesium alloy at optimal condition.


2015 ◽  
Vol 640 ◽  
pp. 43-50 ◽  
Author(s):  
S. El Mouhri ◽  
S. Ettaqi ◽  
A. Laazizi ◽  
Stephane Benayoun

The Friction Stir Welding FSW is a welding process in the solid state to join metallic alloys that is used in many industrial applications such as aerospace, automotive and shipbuilding. The process parameters such as the geometry of the tool, the speed of rotation and the speed of advance play a major role in determining the weld quality. In this work, an attempt was made to establish a relationship between the properties of the base material and FSW process parameters. Welds were made using AA1050 Aluminum alloy with different combination of parameters. Metallographic analysis was performed to verify the (faulty or fault-free) weld quality. Tests microhardness, tensile and bending were carried out to study the changes in the mechanical properties in the weld zone.


2021 ◽  
Vol 890 ◽  
pp. 56-65
Author(s):  
Cristian Ciucă ◽  
Lia Nicoleta Boțilă ◽  
Radu Cojocaru ◽  
Ion Aurel Perianu

The results obtained by ISIM Timisoara to the development of the friction stir welding process (FSW) have supported the extension of the researches on some derived processes, including friction stir processing (FSP). The experimental programs (the researches) were developed within complex research projects, aspects regarding the principle of the process, modalities and techniques of application, experiments for specific applications, being approached. The paper presents good results obtained by friction stir processing of cast aluminum alloys and copper alloys. The optimal process conditions, optimal characteristics of the processing tools were defined. The complex characterization of the processed areas was done, the advantages of the process applying being presented, especially for the cast aluminum alloys: EN AW 4047, EN AW 5083 and EN AW 7021. The characteristics of the processed areas are compared with those of the base materials. The results obtained are a solid basis for substantiating of some specific industrial applications, especially in the automotive, aeronautical / aerospace fields.


2020 ◽  
Vol 44 (4) ◽  
pp. 295-300
Author(s):  
Sanjay Kumar ◽  
Ashish Kumar Srivastava ◽  
Rakesh Kumar Singh

Friction stir processing is an avant-garde technique of producing new surface composite or changing the different properties of a material through intense, solid-state localized material plastic deformation. This change in properties depends upon the deformation formed by inserting a non-consumable revolving tool into the workpiece and travels laterally through the workpiece. This research work highlights the effect of process parameters on mechanical properties of fabricated surface composites by friction stir processing. By using various reinforcing materials like Ti, SiC, B4C, Al2O3 with waste elements like waste eggshells, rice husks, coconut shell and coir will be used to fabricate the green composites which are environmentally friendly and reduces the problem of decomposition. The parameter for this experiment is considered as the reinforcing materials, tool rotation speed and tool tilt angle. The SiC/Al2O3/Ti along with eggshell are selected asreinforcement materials. The main effect of the reinforcement is to improve mechanical properties, like hardness, impact strength and strength. The results revealed that the process parameters significantly affect the mechanical properties of friction stir processed surface composites.


2016 ◽  
Vol 852 ◽  
pp. 331-336 ◽  
Author(s):  
A. Varun Kumar ◽  
M. Balasrinivasan ◽  
Mohamed Dulkiflee

Friction Stir Welding (FSW) is a solid state joining technique for both similar and dissimilar combination of materials. However, there is a scope in optimizing the process parameters involved in the FSW process. Taguchi based Grey Relational Analysis (GRA) has an impact in better optimization results when compared with other optimization techniques. In this present work totally 9 samples of single pass friction stir welded aluminium alloy were taken for the optimization process. The samples were subjected to various tool speeds and traverse speeds by keeping the axial force as constant. The experiments were planned using Taguchi’s orthogonal array selector in order reduce the multi responses involved in the FSW process. The final optimized values were correlated with the experimental values. It is revealed from results that the optimized process parameter showed a good agreement with the experimental values. The present work has also proved the feasibility of GRA in combination with Taguchi technique for better enhancement in the weldment and optimization of the process parameters.


Sign in / Sign up

Export Citation Format

Share Document