Multi Response Optimization of Friction Stir Processing Parameters on Cryo-Rolled AZ31B Alloys

Author(s):  
Senthil Kumar Velukkudi Santhanam ◽  
Jeffrin Michael Gnana Anbalagan ◽  
Shanmuga Sundaram Karibeeran ◽  
Dhanashekar Manickam ◽  
Ramaiyan Sankar

Abstract Friction stir processing (FSP) method is a solid-state technique used for microstructural alteration and enhancing mechanical properties of sheet metals and as-cast materials. Aluminium, brass, copper, steel, tin, nickel, magnesium and titanium are the widely used materials in friction stir processing. Even though magnesium has low density compared to aluminium, only few reports are made on magnesium. Two stage of process was carried out on the experiment to obtain fine grain refinement and improved strength. First, Cryo-rolling processing on 6mm thickness AZ31B alloy at constant roller power, roller rotation speed, strength coefficient and strain exponent. AZ31B alloy is dipped in liquid nitrogen for certain period and rolled in it’s cold state. Number of passes into roller was same for 9 samples. Cryo-rolled AZ31B is used as sample for the second stage i.e., Friction stir processing. FSPed material produce refined grain structure, micro-structurally modified cast alloys by alloying specific elements, and improvement in material strength. Based on Process parameters the properties of the material alters. Friction stir processing was performed on cryo-rolled AZ31B magnesium alloy with various processing parameters. The effect of process parameters (tool pin geometry, tool rotational speed and tool traverse speed) on two responses namely ultimate tensile strength and micro-hardness values were measured. The tool used for Friction stir processing is H13 high carbon steel with hardness upto 60 HRC. Tool pin geometry used for Friction stir processing are square, cylinder and tapered. The processed materials are cut using wire cut EDM as per ASTM standards to measure the ultimate tensile strength and hardness. Universal tester and Vickers hardness tester were used to measure the tensile strength and hardness of the Friction stir processed sample. Most of the research has been published on cryo-rolled and FSP experiments separately. In this work, a combination of these two process is developed for improved tensile strength, hardness, and ultrafine grain refinement. A multi-response optimization was performed using grey relation analysis (GRA) to find out the optimum combination of the process parameters for maximum ultimate tensile strength hardness. Analysis of variance (ANOVA) and F-test were performed to determine the most significant parameters at a 95% confidence level. The corrosion test was made on Friction stir processed cryo-rolled AZ31B alloy for every process parameters. Salt spray test was done as per ASTM standard to find the corrosion rate. The corrosion rate for Friction stir processed cryo-rolled material is less (at optimal condition). The microstructure analysis was done on the samples using a Scanning Electron Microscopy. For clear view of grains the material is subjected to polishing and etching. The etchant used on the material is Picral + Acetic acid + Hydrogen peroxide. Fine grain size was obtained on the Friction Stir processed Cryo-rolled AZ31B magnesium alloy at optimal condition.

2012 ◽  
Vol 232 ◽  
pp. 3-7
Author(s):  
Akinlabi Esther Titilayo ◽  
Akinlabi Stephen Akinwale

This paper reports the effects of processing parameters on defects formed during friction stir processing of 6082-T6 Aluminium Alloy. The plates were processed by varying the feed rate between 50 and 250 mm/min, while the rotational speed was varied between 1500 and 3500 rpm to achieve the best result. It was observed that the sheets processed at the highest feed rate considered in this research resulted in wormhole defect. These processed samples with defects were correlated to the tensile results and it was found that the Ultimate Tensile Strength (UTS) of these samples was relatively low compared to other samples without defects.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1695
Author(s):  
Kia Wai Liew ◽  
Yu Zorn Chung ◽  
Guo Sheng Teo ◽  
Chee Kuang Kok

Friction stir processing was experimented on recycled aluminum alloy 6063 to investigate the effects of varying friction stir tool pin geometry and friction stir processing parameters on the microhardness and surface roughness. Different tool pin geometry has great influence on the outcome as it alters the ability to provide localized heating and better material flow. This study was performed using two different types of tool pin geometry, namely, the cylindrical threaded and the taper threaded pins, across varying rotational speeds and feed rates. The mechanical properties of the processed workpiece were inspected and analyzed in terms of microhardness, microstructure, and surface roughness. The results show that the taper threaded tool offers the highest improvement in microhardness up to 63% at the lowest rotational speed and highest feed rate at 1150 rpm and 30 mm/min, respectively, and this is supported by microscopy images showing finer grains with the compact and homogenous distribution. The taper threaded tool also provided a better surface roughness than the cylindrical threaded tool. However, the surface produced by cylindrical threaded at 30 mm/min feed rates is as smooth and consistent as that of taper threaded tool.


Author(s):  
Sankar Ramaiyan ◽  
Udayakumar Mani ◽  
Rathinasuriyan Chandran ◽  
Senthil Kumar Velukkudi Santhanam

In this research, friction stir processing of AZ31B magnesium alloy of 6 mm thickness was done in submerged conditions. The process parameters, i.e. tool pin profile (simple cylindrical, stepped cylindrical, stepped square), rotational speed ranging from 800 to 1200 rpm and traverse speed ranging from 0.5 to 1.5 mm/sec were optimized using the multi response optimization technique. The experiment was conducted with L27 orthogonal arrays. The Immersion test and hardness have been considered as output response. From the view of an application, it would be more significant to optimize the Immersion Corrosion rate and Hardness of Submerged Friction Stir Processed AZ31B alloy. Thus, this study aims at optimizing the process parameters, including various tool pin profiles, feed rates and rotational speeds with corrosion rate and micro hardness using TOPSIS. Using analysis of variance (ANOVA), the most significant parameter effect of the submerged friction stir processing was determined.


2011 ◽  
Vol 383-390 ◽  
pp. 2753-2758
Author(s):  
Amir Mostafapour Asl ◽  
Saeed Mahmoodi Darani ◽  
Mohamad Kazem Besharati Givi ◽  
Arash Aghagol

Friction stir processing (FSP) was used to fabricate Al/Cu metal matrix composite (MMC). The effects of two different tool pin profiles (straight cylindrical and square) and the number of FSP passes on microstructure, tensile properties and microhardness were studied. The results indicated that good dispersion of micro-sized Cu particles, finer grains, higher tensile properties and higher microhardness, can be achieved by the square tool pin profile compared to the samples produced by the other tool. Also it was observed that the ultimate tensile strength of the samples produced by two FSP passes, as a result of Cu particles shattering, increased intensively compared to the samples fabricated with first FSP pass. Further FSP passes increased the elongation of the composites without any considerable changes in yield and ultimate tensile strength.


2019 ◽  
Vol 12 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Muna K. Abbassa ◽  
Noor Alhuda B. Sharhan

This work is devoted toward optimization of the parameters of the friction stir processing (FSP) which effect on tensile strength of aluminium alloy AA6061-T6 of 6mm thick plate by applying a certain number of tests utilizing the Taguchi method. Design of experiment (DOE) has been applied for the determination of the most important parameters influencing ultimate tensile strength. FSP was achieved under three different rotation speeds (800,1000 and 1250) rpm, different transverse speeds (16,25 and 32) mm\min, and number passes(1,2 and 3)  in the same direction and tool tilt angle was 2°  with using threaded cylindrical pin profile.  The best FSP parameters were 1250 rpm and 32 mm\min and two passes. It was found that the higher hardness value was 75HV in stir zone center and then decreases toward the TMAZ, HAZ and the base metal


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 728
Author(s):  
Senthil Kumaran S ◽  
Jayakumar Kaliappan ◽  
Kathiravan Srinivasan ◽  
Yuh-Chung Hu ◽  
Sanjeevikumar Padmanaban ◽  
...  

The friction welding of tube to tube plate using an external tool (FWTPET) is widely deployed in several industrial applications, such as aerospace, automotive, and power plants. Moreover, for achieving a better tensile strength and hardness in the weld zone, the friction stir processing (FSP) technique was incorporated into the FWTPET process for joining aluminum alloys (AA6063 tube, AA6061 tube plate). Furthermore, it has to be noted that FWTPET was applied for joining the AA6063 tube to the AA6061 tube plate, and FSP was deployed for reinforcing the weld zone with carbon nanotube (CNT) and silicon nitride (Si3N4) particles, thereby attaining the desirable mechanical properties. Subsequently, the Taguchi L25 orthogonal array was used for identifying the most influential input and output FWTPET + FSP process parameters. Furthermore, particle swarm optimization (PSO) and the firefly algorithm (FFA) were deployed for determining the optimized input and output FWTPET + FSP process parameters. The input process parameters include CNT, Si3N4, rotational tool speed, and depth. Furthermore, the tensile strength of the welded joint was considered as the output process parameter. The process parameters predicted by PSO and FFA were compared with the experimental values. It was witnessed that deviation between the predicted and experimental values was minimal. Moreover, it was found that FFA provided a superior tensile strength prediction than PSO.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Sipokazi Mabuwa ◽  
Velaphi Msomi

This paper presents the analysis of the friction stir-processed aluminium alloy 5083-H111 gas tungsten arc-welded and friction stir-welded joints. The comparative analysis was performed on the processed and unprocessed gas tungsten arc-welded and friction stir-welded joints of similar aluminium alloy 5083-H111. The results showed a clear distinction between the friction stir processed joints and unprocessed joints. There is a good correlation observed between the microstructural results and the tensile results. Ultrafine grain sizes of 4.62 μm and 7.177 μm were observed on the microstructure of the friction stir-processed friction stir-welded and gas tungsten arc-welded joints. The ultimate tensile strength for friction stir-welded and gas tungsten arc-welded before friction stir processing was 153.75 and 262.083 MPa, respectively. The ultimate tensile strength for friction stir processed friction stir-welded joint was 303.153 MPa and gas tungsten arc-welded joints one was 249.917 MPa. The microhardness values for the unprocessed friction stir-welded and gas tungsten arc-welded joints were both approximately 87 HV, while those of the friction stir-processed ones were 86.5 and 86 HV, respectively. The application of friction stir processing transformed the gas tungsten arc morphology from brittle to ductile dimples and reduced the ductile dimple size of the unprocessed friction stir-welded joints from the range of 4.90–38.33 μm to 3.35–15.59 μm.


Author(s):  
R Palanivel ◽  
RF Laubscher ◽  
S Vigneshwaran ◽  
I Dinaharan

Friction stir welding is a solid-state welding technique for joining metals such as aluminum alloys quickly and reliably. This article presents a design of experiments approach (central composite face–centered factorial design) for predicting and optimizing the process parameters of dissimilar friction stir welded AA6351–AA5083. Three weld parameters that influence weld quality were considered, namely, tool shoulder profile (flat grooved, partial impeller and full impeller), rotational speed and welding speed. Experimental results detailing the variation of the ultimate tensile strength as a function of the friction stir welding process parameters are presented and analyzed. An empirical model that relates the friction stir welding process parameters and the ultimate tensile strength was obtained by utilizing a design of experiments technique. The models developed were validated by an analysis of variance. In general, the full impeller shoulder profile displayed the best mechanical properties when compared to the other profiles. Electron backscatter diffraction maps were used to correlate the metallurgical properties of the dissimilar joints with the joint mechanical properties as obtained experimentally and subsequently modeled. The optimal friction stir welding process parameters, to maximize ultimate tensile strength, are identified and reported.


Sign in / Sign up

Export Citation Format

Share Document