scholarly journals Mechanical Properties of Ultra-High Performance Concrete before and after Exposure to High Temperatures

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 770 ◽  
Author(s):  
How-Ji Chen ◽  
Yi-Lin Yu ◽  
Chao-Wei Tang

Compared with ordinary concrete, ultra-high performance concrete (UHPC) has excellent toughness and better impact resistance. Under high temperatures, the microstructure and mechanical properties of UHPC may seriously deteriorate. As such, we first explored the properties of UHPC with a designed 28-day compressive strength of 120 MPa or higher in the fresh mix phase, and measured its hardened mechanical properties at seven days. The test variables included: the type of cementing material and the mixing ratio (silica ash, ultra-fine silicon powder), the type of fiber (steel fiber, polypropylene fiber), and the fiber content (volume percentage). In addition to the UHPC of the experimental group, pure concrete was used as the control group in the experiment; no fiber or supplementary cementitious materials (silica ash, ultra-fine silicon powder) were added to enable comparison and discussion and analysis. Then, the UHPC-1 specimens of the experimental group were selected for further compressive, flexural, and splitting strength tests and SEM observations after exposure to different target temperatures in an electric furnace. The test results show that at room temperature, the 56-day compressive strength of the UHPC-1 mix was 155.8 MPa, which is higher than the >150 MPa general compressive strength requirement for ultra-high-performance concrete. The residual compressive strength, flexural strength, and splitting strength of the UHPC-1 specimen after exposure to 300, 400, and 500 °C did not decrease significantly, and even increased due to the drying effect of heating. However, when the temperature was 600 °C, spalling occurred, so the residual mechanical strength rapidly declined. SEM observations confirmed that polypropylene fibers melted at high temperatures, thereby forming other channels that helped to reduce the internal vapor pressure of the UHPC and maintain a certain residual strength.

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Jisong Zhang ◽  
Yinghua Zhao ◽  
Haijiang Li

Ultra-high performance concrete (UHPC) has superior mechanical properties and durability to normal strength concrete. However, the high amount of cement, high environmental impact, and initial cost are regarded as disadvantages, restricting its wider application. Incorporation of supplementary cementitious materials (SCMs) in UHPC is an effective way to reduce the amount of cement needed while contributing to the sustainability and cost. This paper investigates the mechanical properties and microstructure of UHPC containing fly ash (FA) and silica fume (SF) with the aim of contributing to this issue. The results indicate that, on the basis of 30% FA replacement, the incorporation of 10% and 20% SF showed equivalent or higher mechanical properties compared to the reference samples. The microstructure and pore volume of the UHPCs were also examined. Furthermore, to minimise the experimental workload of future studies, a prediction model is developed to predict the compressive strength of the UHPC using artificial neural networks (ANNs). The results indicate that the developed ANN model has high accuracy and can be used for the prediction of the compressive strength of UHPC with these SCMs.


Author(s):  
Faiq M. Al-Zwainy ◽  
Hussam k. Risan ◽  
Rana I. K. Zaki

The purpose of this study was to conduct a meta-analysis that shows the influence of fiber on ultimate compressive strength and tensile strength of ultra-high performance concrete. The internet scholarly search engines and ScienceDirect article references were used to illustrate the papers concerning the experimental investigations of mechanical properties of ultra-high strength concrete with and without fiber with clearly, completely and comparative raw data. The normal concrete test results were dismissed from this search. Seven trials were identified based on the adopted inclusion and exclusion criteria above. The meta-analysis based on standardized mean difference was carried out on the basis of a fixed-effects model for the major outcomes of the ultimate compressive and tensile properties of ultra-high performance concrete. A total of 888 test specimens were enrolled in these seven trials. The combined analysis yielded a sign of a significant improvement in ultimate compressive strength and tensile strength of ultra-high strength concrete with fiber addition of 2% by concrete volume. The summary effect size of ultimate compressive strength was 2.34 while a more improvement in term of tensile strength with effect size of 2.64. By addition fiber of 2% provides a significant benefit in mechanical properties of ultra-high performance concrete.


2020 ◽  
Vol 309 ◽  
pp. 26-30 ◽  
Author(s):  
Josef Fládr ◽  
Petr Bílý ◽  
Tomáš Trtík ◽  
Roman Chylík ◽  
Vladimír Hrbek

The paper compares macromechanical and micromechanical properties of high-performance concrete containing supplementary cementitious materials and basalt aggregate. The aggregate was either a common unprocessed crushed basalt aggregate or crushed basalt aggregate the coarse fractions (4/8 and 8/16 mm) of which were washed by water and dried before use. The observed macro-mechanical properties were compressive strength, tensile strength, elastic modulus and depth of penetration of water under pressure; the paper is focused on the first observed property, which is the basic material characteristic. On the microscale, the thickness of the interfacial transition zone (ITZ) was determined by nanoindentation. The positive influence of supplementary cementitious materials and aggregate washing on compressive strength was confirmed and the correlation between macromechanical and micromechanical characteristics was proved.


2021 ◽  
Vol 7 (8) ◽  
pp. 1290-1309
Author(s):  
Esmail Shahrokhinasab ◽  
Trevor Looney ◽  
Royce Floyd ◽  
David Garber

Ultra-High Performance Concrete (UHPC) is a new class of concrete that differentiates itself from other concrete materials due to its exceptional mechanical properties and durability. It has been used in structural rehabilitation and accelerated bridge construction, structural precast applications, and several other applications in the past decades. The mechanical properties of UHPC include compressive strength greater than 124 MPa (18 ksi) and sustained post cracking tensile strength greater than 5 MPa (0.72 ksi) when combined with steel, synthetic or organic fibers. Proprietary, pre-bagged mixtures are currently available in the market, but can cost about 20 times more than traditional concrete. This high price and the unique mixing procedure required for UHPC has limited its widespread use in the US and has motivated many researchers to develop more economical versions using locally available materials. The objective of this study was to investigate the effect of different proportions of typical UHPC mixture components on the mechanical properties of the mixtures. Particle packing theory was used to determine a few optimal mixture proportions and then modifications were made to investigate the effect. A compressive strength of around 124 MPa (18 ksi) was achieved without using any quartz particles in the mixture design. Doi: 10.28991/cej-2021-03091726 Full Text: PDF


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1472
Author(s):  
Sungwoo Park ◽  
Siyu Wu ◽  
Zhichao Liu ◽  
Sukhoon Pyo

Although ultra high-performance concrete (UHPC) has great performance in strength and durability, it has a disadvantage in the environmental aspect; it contains a large amount of cement that is responsible for a high amount of CO2 emissions from UHPC. Supplementary cementitious materials (SCMs), industrial by-products or naturally occurring materials can help relieve the environmental burden by reducing the amount of cement in UHPC. This paper reviews the effect of SCMs on the properties of UHPC in the aspects of material properties and environmental impacts. It was found that various kinds of SCMs have been used in UHPC in the literature and they can be classified as slag, fly ash, limestone powder, metakaolin, and others. The effects of each SCM are discussed mainly on the early age compressive strength, the late age compressive strength, the workability, and the shrinkage of UHPC. It can be concluded that various forms of SCMs were successfully applied to UHPC possessing the material requirement of UHPC such as compressive strength. Finally, the analysis on the environmental impact of the UHPC mix designs with the SCMs is provided using embodied CO2 generated during the material production.


PCI Journal ◽  
2020 ◽  
Vol 65 (6) ◽  
pp. 35-61
Author(s):  
Chungwook Sim ◽  
Maher Tadros ◽  
David Gee ◽  
Micheal Asaad

Ultra-high-performance concrete (UHPC) is a special concrete mixture with outstanding mechanical and durability characteristics. It is a mixture of portland cement, supplementary cementitious materials, sand, and high-strength, high-aspect-ratio microfibers. In this paper, the authors propose flexural design guidelines for precast, prestressed concrete members made with concrete mixtures developed by precasters to meet minimum specific characteristics qualifying it to be called PCI-UHPC. Minimum specified cylinder strength is 10 ksi (69 MPa) at prestress release and 18 ksi (124 MPa) at the time the member is placed in service, typically 28 days. Minimum flexural cracking and tensile strengths of 1.5 and 2 ksi (10 and 14 MPa), respectively, according to ASTM C1609 testing specifications are required. In addition, strain-hardening and ductility requirements are specified. Tensile properties are shown to be more important for structural optimization than cylinder strength. Both building and bridge products are considered because the paper is focused on capacity rather than demand. Both service limit state and strength limit state are covered. When the contribution of fibers to capacity should be included and when they may be ignored is shown. It is further shown that the traditional equivalent rectangular stress block in compression can still be used to produce satisfactory results in prestressed concrete members. A spreadsheet workbook is offered online as a design tool. It is valid for multilayers of concrete of different strengths, rows of reinforcing bars of different grades, and prestressing strands. It produces moment-curvature diagrams and flexural capacity at ultimate strain. A fully worked-out example of a 250 ft (76.2 m) span decked I-beam of optimized shape is given.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2455
Author(s):  
Jiayuan He ◽  
Weizhen Chen ◽  
Boshan Zhang ◽  
Jiangjiang Yu ◽  
Hang Liu

Due to the sharp and corrosion-prone features of steel fibers, there is a demand for ultra-high-performance concrete (UHPC) reinforced with nonmetallic fibers. In this paper, glass fiber (GF) and the high-performance polypropylene (HPP) fiber were selected to prepare UHPC, and the effects of different fibers on the compressive, tensile and bending properties of UHPC were investigated, experimentally and numerically. Then, the damage evolution of UHPC was further studied numerically, adopting the concrete damaged plasticity (CDP) model. The difference between the simulation values and experimental values was within 5.0%, verifying the reliability of the numerical model. The results indicate that 2.0% fiber content in UHPC provides better mechanical properties. In addition, the glass fiber was more significant in strengthening the effect. Compared with HPP-UHPC, the compressive, tensile and flexural strength of GF-UHPC increased by about 20%, 30% and 40%, respectively. However, the flexural toughness indexes I5, I10 and I20 of HPP-UHPC were about 1.2, 2.0 and 3.8 times those of GF-UHPC, respectively, showing that the toughening effect of the HPP fiber is better.


Sign in / Sign up

Export Citation Format

Share Document