scholarly journals Experimental Study on the Shear Behavior of GFRP–Concrete Composite Beam Connections

Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1067 ◽  
Author(s):  
Jin Di ◽  
Lu Cao ◽  
Jiahao Han

Monotonic push-out tests were carried out on 11 specimens having high-strength bolt, T-type perforated plate, or slot-type perforated plate connections to investigate the influence of different connection types on the interface performance of glass fiber reinforced polymer (GFRP)–concrete composite beams. The effects of the number of rows and spacing of high-strength bolts on the failure mode, load–slip relationship, and shear capacity were analyzed. The effects of the number and spacing of holes in the perforated plates, and the inclusion of transverse rebar were analyzed. The results show that the failure mode of the bolt specimens is brittle failure and the perforated plate is ductile failure. The single bolt connection has the lowest ultimate bearing capacity, while the single T-shaped and slotted perforated plates are 170% and 270% times greater. The rows and spacing have no difference in bolts. The perforated plate gradually decreased with an increase in rows and gradually increased with an increase in spacing. The transverse rebar can increase the ultimate bearing capacity and ductility in the plastic stage for perforated plate. Accordingly, there are good choices for interface connectors for GFRP–concrete composite beams, while bolt connectors need to be carefully chosen.

Author(s):  
Johannes Lechner ◽  
Jürgen Feix ◽  
Robert Hertle

<p>The Altstadtring-Tunnel is one of the essential east-west traffic routes in the city center of Munich and was constructed in the late 1960s. Segment 34 of the tunnel was built directly underneath the existing Prince-Carl- Palais, a historic building from 1804. Therefore 15 pre-stressed concrete girders with an effective depth of</p><p>3.5 m and a maximum span of up to 30 m were built which now form the tunnel roof slab. These girders were pre-stressed with steel nowadays well known for stress corrosion cracking. A recalculation of the slab showed that no ductile failure can be guaranteed in case of a progressive rupture of the tendons. Therefore, a concept for strengthening the slab was developed using concrete screw anchors as post installed bending and shear reinforcement. The concrete screw anchors are normally installed as anchoring elements in cracked and non- cracked concrete and are available with diameters up to 22 mm. Developing this concept further, it is straight forward to use these anchoring elements as post-installed reinforcement in existing concrete structures. This new strengthening system was developed at the University of Innsbruck in the last few years and can fulfill the special requirements of this project, such as installation of the strengthening system from underneath the tunnel slab during ongoing use of the structure. High strength steel with diameters of up to 63.5 mm will be used as post-installed bending reinforcement covered with a new shotcrete layer on the underside of the tunnel slab. In total 59.3 tons of new flexural reinforcement and 7199 concrete screws for strengthening the shear capacity of the girders will be used to ensure a ductile failure of the tunnel slab. The on-site work started in March 2019 and is expected to take two years to complete.</p>


2018 ◽  
Vol 2018 ◽  
pp. 1-18
Author(s):  
Min Gan ◽  
Yu Yu ◽  
Liren Li ◽  
Xisheng Lu

Four test pieces with different steel plate center-to-center distances and reinforcement ratios are subjected to low-cycle repeat quasistatic loading to optimize properties as failure mode, hysteretic curve, skeleton curve, energy dissipation parameters, strength parameters, and seismic performance of high-strength concrete low-rise shear walls. The embedded steel plates are shown to effectively restrict wall crack propagation, enhance the overall steel ratio, and improve the failure mode of the wall while reducing the degree of brittle failure. Under the same conditions, increasing the spacing between the steel plates in the steel plate concrete shear wall can effectively preserve the horizontal bearing capacity of the shear wall under an ultimate load. The embedded steel plates perform better than concealed bracing in delaying stiffness degeneration in the low-rise shear walls, thus safeguarding their long-term bearing capacity. The results presented here may provide a workable basis for shear wall design optimization.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Dafu Cao ◽  
Jiaqi Liu ◽  
Wenjie Ge ◽  
Rui Qian

In order to study the influence of the axial compression ratio and steel ratio on the shear-carrying capacity of steel-truss-reinforced beam-column joints, five shear failure interior joint specimens were designed. The effect of different coaxial pressure ratios (0.1, 0.2, and 0.3) and steel contents on the strain, ultimate bearing capacity, seismic performance, and failure pattern of cross-inclined ventral and chord bars in the joint core area was investigated. The experimental results show that the load-displacement hysteretic curves of all test specimens exhibit a bond-slip phenomenon. With the increase of the axial compression ratio, the ultimate bearing capacity of the joint core increases by 3.4% and 5.9%, respectively. While the ductility decreases by 10.3% and 13.1%, and the energy consumption capacity decreases by 3.2% and 5.8%, respectively. The shear capacity and ductility of the member with cross diagonal ventral steel angle in the joint core are increased by 12.9% and 13.4%, respectively. The shear capacity and ductility of the joint can be significantly improved by increasing the amount of steel in the core area. The expression of shear capacity suitable for this type of joint is obtained by fitting analysis, which can be used as a reference for engineering design.


2013 ◽  
Vol 671-674 ◽  
pp. 409-412
Author(s):  
Chun Min Dong ◽  
Ke Dong Guo

To investigate the influence of wire mesh type, wrapped way and stress of column on the behavior of RC square columns, the experiment including an unreinforced column and 7 strengthened columns with the high strength wire mesh mortar were tested. The results were shown that the strength and axial deformation of columns reinforced by high strength wire mesh mortar were enhanced. Finally, the calculation formula for ultimate bearing capacity of the reinforced columns was given based on the test results, which agreed with the tested results well.


2012 ◽  
Vol 594-597 ◽  
pp. 987-992
Author(s):  
Chun Lei Fan ◽  
Ji Ping Hao ◽  
Wei Feng Tian

Experiment on bearing capacity of 24 Q460 high strength angle steel for compression members attached by one leg shows: the ultimate bearing capacity of the experiment value are higher than the calculated of the “Design of Latticed Steel Transmission Structures” (ASCE10-1997), on the same section in different slenderness ratio of components, the larger slenderness ratio, the higher the ratio; while on the same slenderness ratio in different sections, the greater width-thickness radio, the greater the ratio. Based on this problem, analyzing the current standard, a set of formulas based on high-strength angle struts connected by single Limb was brought, which can used for the design of the Q460 high-strength angle.


2020 ◽  
Vol 980 ◽  
pp. 266-274
Author(s):  
Jian Hua Xiao ◽  
Miao Liu ◽  
Jin Li Wang ◽  
Abdulhamid Yakubu Anvah

In order to investigate the shear capacity of prefabricated beam, experiments about shear bearing were performed on one integral pouring contrast beam and two prefabrication and assembly beams. Inspecting the relationship between load and deflection under the load, the development regularity of strain between longitude reinforced and stirrup, the shear capacity of cracking load and ultimate bearing capacity, analyzing failure mode of oblique section and connection performance of old and new concrete in the groove, and compared with the mechanical properties of cast-in-place concrete beam. The experimental results indicate that: prefabrication and assembly beam and cast-in-place beams have similar shear bearing capacity and failure mode of oblique section, along with the load level continues to increase, the groove joint stiffness weakened, but has little effect on the overall deformation.


2020 ◽  
pp. 136943322098165
Author(s):  
Jianyang Xue ◽  
Xin Zhang ◽  
Xiaojun Ke

This paper mainly focused on the seismic performance and shear calculation method of steel reinforced high-strength concrete (SRHC) columns with rectangular helical hoops. An experimental investigation was performed in this paper. Eleven SRHC columns with rectangular helical hoops and one with ordinary hoops were constructed at the laboratory of Guangxi university. The failure modes, hysteresis loops, envelope curves, characteristic loads and displacements and cumulative damage analysis are presented and investigated. It can be seen from the test results that the failure modes of SRHC columns can be divided into three types with the shear span ratio increased, namely, shear baroclinic failure mode, flexure-shear failure mode and flexure failure mode. In addition, the specimens with rectangular helical hoops have plumper hysteretic loops. Shear span ratio is the main influencing factor of characteristic load; the axial compression ratio and concrete strength have less influence on characteristic load, while stirrup ratio has little effect on the characteristic load. Finally, a calculation method for shear capacity of SRHC columns under shear baroclinic failure and flexure-shear failure mode is proposed.


2014 ◽  
Vol 578-579 ◽  
pp. 751-756
Author(s):  
Bin Li ◽  
Qun Hui Zhang ◽  
Chun Yan Gao

Nonlinear finite element parameters analysis on the lattice type steel pipe concrete wind turbine tower, it shows the entire process of load bearing, failure mode and ultimate bearing capacity, researches on the influence law of aspect ratio, form of tower webs, tower diameter to thickness ratio and web member stiffness to tower column stiffness ratio on the ultimate bearing capacity and tower failure mode. The finite element analysis results shows that the tower aspect ratio λ, the diameter-thickness ratio γ of tower columns and the increase of stiffness ratio β between web members and tower columns has great influence on ultimate bearing capacity and failure mode, while the form of webs has small influence on that. with the increase of tower aspect ratio λ, the decrease of diameter-thickness ratio γ of tower columns and the increase of stiffness ratio β between web members and tower columns, the ultimate bearing capacity of this kind of latticed towers increase, the failure mode changed from Web local buckling to The combined damage of Web local buckling and the tension tower yield. This paper suggests that in the design of wind turbulent generator tower, the tower aspect ratio λ should be best controlled at 1/9, the bottom layers of this kind of tower should best use the re-divided web members, and other web member forms used on above layers, the diameter-thickness ratio γ of tower column should be taken less than 30, and the stiffness ratio β between webs and columns should be controlled less than 0.05 in order to avoid damage occurring on the tower columns earlier than the webs. The results can provide evidence for the engineering design.


2014 ◽  
Vol 578-579 ◽  
pp. 155-159 ◽  
Author(s):  
Peng Cheng Zhu ◽  
Ming Kang Gou ◽  
Yin Zhi Zhou

The external post-tensioning technique has been commonly used in the construction field because it facilitates the analysis of structures and is widely applicable for many types of structures. In this research, 12 steel H-beams were built and tested in terms of the amount of tendon or prestressing force. The results show that the externally prestressing method can increase ultimate bearing capacity of the beams. The prestressing force is the significant factor that influence the strengthening of steel H-beams. However, the amount of deviators cannot significantly influence the bearing capacity.


2011 ◽  
Vol 368-373 ◽  
pp. 225-229
Author(s):  
Guo Can Chen ◽  
Zhi Sheng Xu ◽  
Zhi Shuo Yang

This paper presents an experimental investigation on the short composition columns reinforced with the prefabricated super high strength concrete used stone-chop(abbreviated to SHSCUS) filled with steel tubes with 1RC as reference. The experimental parameters were the concrete type inner steel tubes, and L/D ratio, steel ratio and so on. The performance of the composition columns was investigated using different diameter-to-thickness ratio of steel tubes ranging from 15 to 26.6, and different cubic strength of 126.7, 120.3, 122.4, 134.4, 125.4, 111.4, 108.6MPa of infill concrete. The experimental results showed that concrete cover falling off was prior to specimens failure, and that the design rule, as specified in current code suitable for HSC overestimate the ultimate bearing capacity, were not suitable for the case with SHSCUS. Then the hypothesis was put forward based on experimental phenomena observed, and the formula of its ultimate load capacity was suggested based on superposition method, by which the predicted values have a good coincidence with those from the experiments.


Sign in / Sign up

Export Citation Format

Share Document