scholarly journals Quantitative Representation of Mechanical Behavior of the Surface Hardening Layer in Shot-Peened Nickel-Based Superalloy

Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1437
Author(s):  
Wu Zeng ◽  
Junjie Yang

Surface hardening treatment can usually introduce severe grain distortion with a large gradient in the surface layer. It results in mechanical properties being difficult to accurately determine through macroscopic tests due to the non-uniformity of the shot-peened material. In this study, the mechanical behavior of uniformly pre-deformed nickel-based superalloy IN718 was investigated with monotonic tensile tests and instrumented indentation tests. For the shot-peened material, the hardness distribution of the surface hardening layer after shot peening was identified through the instrumented indentation method. According to the stress–strain results of pre-deformed materials, Ramberg–Osgood model parameters could be presented with plastic deformation. Assuming the power-law relationship between hardness and plastic deformation, the plastic deformation distribution along the depth of the surface hardening layer was clarified. Based on the results, a method to identify the stress–strain relationships of hardened material at different depths was established. Finally, the finite-element simulations of the instrumented indentation test considered residual stress and strain hardening were built to verify the method presented herein. The results show that the solution to evaluate the mechanical properties of hardening layer materials in the microscopic zone is feasible, which can provide the foundation for the failure analysis of shot-peened materials.

2006 ◽  
Vol 114 ◽  
pp. 171-176 ◽  
Author(s):  
Joanna Zdunek ◽  
Pawel Widlicki ◽  
Halina Garbacz ◽  
Jaroslaw Mizera ◽  
Krzysztof Jan Kurzydlowski

In this work, Al-Mg-Mn-Si alloy (5483) in the as-received and severe plastically deformed states was used. Plastic deformation was carried out by hydrostatic extrusion, and three different true strain values were applied 1.4, 2.8 and 3.8. All specimens were subjected to tensile tests and microhardness measurements. The investigated material revealed an instability during plastic deformation in the form of serration on the stress-strain curves, the so called Portevin-Le Chatelier effect It was shown that grain size reduction effected the character of the instability.


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Shahrokh Zeinali-Davarani ◽  
Yunjie Wang ◽  
Ming-Jay Chow ◽  
Raphaël Turcotte ◽  
Yanhang Zhang

As major extracellular matrix components, elastin, and collagen play crucial roles in regulating the mechanical properties of the aortic wall and, thus, the normal cardiovascular function. The mechanical properties of aorta, known to vary with age and multitude of diseases as well as the proximity to the heart, have been attributed to the variations in the content and architecture of wall constituents. This study is focused on the role of layer-specific collagen undulation in the variation of mechanical properties along the porcine descending thoracic aorta. Planar biaxial tensile tests are performed to characterize the hyperelastic anisotropic mechanical behavior of tissues dissected from four locations along the thoracic aorta. Multiphoton microscopy is used to image the associated regional microstructure. Exponential-based and recruitment-based constitutive models are used to account for the observed mechanical behavior while considering the aortic wall as a composite of two layers with independent properties. An elevated stiffness is observed in distal regions compared to proximal regions of thoracic aorta, consistent with sharper and earlier collagen recruitment estimated for medial and adventitial layers in the models. Multiphoton images further support our prediction that higher stiffness in distal regions is associated with less undulation in collagen fibers. Recruitment-based models further reveal that regardless of the location, collagen in the media is recruited from the onset of stretching, whereas adventitial collagen starts to engage with a delay. A parameter sensitivity analysis is performed to discriminate between the models in terms of the confidence in the estimated model parameters.


Author(s):  
Aleksandra Towarek ◽  
Wojciech Jurczak ◽  
Joanna Zdunek ◽  
Mariusz Kulczyk ◽  
Jarosław Mizera

AbstractTwo model aluminium-magnesium alloys, containing 3 and 7.5 wt.% of Mg, were subjected to plastic deformation by means of hydrostatic extrusion (HE). Two degrees of deformation were imposed by two subsequent reductions of the diameter. Microstructural analysis and tensile tests of the materials in the initial state and after deformation were performed. For both materials, HE extrusion resulted in the deformation of the microstructure—formation of the un-equilibrium grain boundaries and partition of the grains. What is more, HE resulted in a significant increase of tensile strength and decrease of the elongation, mostly after the first degree of deformation.


Author(s):  
Zengle Li ◽  
Bin Zhi ◽  
Enlong Liu

In response to the major challenges faced by China’s transition to green low-carbon energy under the dual-carbon goal, the use of energy Internet cross-boundary thinking will help to develop research on the integration of renewable clean energy and buildings. Energy piles are a new building-energy-saving technology that uses geothermal energy in the shallow soil of the Earth’s surface as a source of cold (heat) to achieve heating in winter and cooling in summer. It is a complex thermomechanical working process that changes the temperature of the rock and soil around the pile, and the temperature change significantly influences the mechanical properties of natural loess. Although the soil temperature can be easily and quickly obtained by using sensors connected to the Internet of Things, the mechanical properties of natural loess will change greatly under the influence of temperature. To explore the influence of temperature on the stress–strain relationship of structural loess, the undrained triaxial consolidation tests were carried out under different temperatures (5, 20, 50 and 70∘C) and different confining pressures (50, 100, 200 and 400[Formula: see text]kPa), and a binary-medium model was introduced to simulate the stress–strain relationship. By introducing the damage rate under temperature change conditions, a binary-medium model of structural loess under variable temperature conditions was established, and the calculation method of the model parameters was proposed. Finally, the calculated results were compared with the test results. The calculation results showed that the established model has good applicability.


Author(s):  
Seung-Kyun Kang ◽  
Young-Cheon Kim ◽  
Chan-Pyoung Park ◽  
Dongil Kwon

Understanding the property distribution in the weld zone is very important for structural safety, since deformation and fracture begin at the weakest point. However, conventional tensile tests can measure only average material properties because they require large specimens. Small-scale tests are being extensively researched to remove this limitation, among such tests, instrumented indentation test (IIT) are of great interest because of their simple procedures. Here we describe the evaluation of tensile properties using IIT and a representative stress-strain approach. The representative stressstrain method, introduced in 2008 in ISO/TR29381, directly correlates the stress and strain under the indenter to the true stress and strain of tensile testing by defining representative functions. Using this technique, we successfully estimate the yield strength and tensile strength of structural metallic materials and also obtain profiles of the weld-zone tensile properties.


2002 ◽  
Vol 17 (1) ◽  
pp. 5-8 ◽  
Author(s):  
R. Z. Valiev ◽  
I. V. Alexandrov ◽  
Y. T. Zhu ◽  
T. C. Lowe

It is well known that plastic deformation induced by conventional forming methodssuch as rolling, drawing or extrusion can significantly increase the strength of metalsHowever, this increase is usually accompanied by a loss of ductility. For example, Fig.1 shows that with increasing plastic deformation, the yield strength of Cu and Almonotonically increases while their elongation to failure (ductility) decreases. Thesame trend is also true for other metals and alloys. Here we report an extraordinarycombination of high strength and high ductility produced in metals subject to severeplastic deformation (SPD). We believe that this unusual mechanical behavior is causedby the unique nanostructures generated by SPD processing. The combination ofultrafine grain size and high-density dislocations appears to enable deformation by newmechanisms. This work demonstrates the possibility of tailoring the microstructures ofmetals and alloys by SPD to obtain both high strength and high ductility. Materialswith such desirable mechanical properties are very attractive for advanced structuralapplications.


2004 ◽  
pp. 1-12

Abstract Tensile tests are performed for several reasons. The results of tensile tests are used in selecting materials for engineering applications. Tensile properties often are used to predict the behavior of a material under forms of loading other than uniaxial tension. Elastic properties also may be of interest, but special techniques must be used to measure these properties during tensile testing, and more accurate measurements can be made by ultrasonic techniques. This chapter provides a brief overview of some of the more important topics associated with tensile testing. These include tensile specimens and test machines; stress-strain curves, including discussions of elastic versus plastic deformation, yield points, and ductility; true stress and strain; and test methodology and data analysis.


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 762 ◽  
Author(s):  
Rub Nawaz Shahid ◽  
Sergio Scudino

Lightweight metal matrix composites are synthesized from elemental powder mixtures of aluminum and magnesium using pressure-assisted reactive sintering. The effect of the reaction between aluminum and magnesium on the microstructure and mechanical properties of the composites due to the formation of β-Al3Mg2 and γ-Al12Mg17 intermetallics is investigated. The formation of the intermetallic compounds progressively consumes aluminum and magnesium and induces strengthening of the composites: the yield and compressive strengths increase with the increase of the content of intermetallic reinforcement at the expense of the plastic deformation. The yield strength of the composites follows the iso-stress model when the data are plotted as a function of the intermetallic content.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Yilong Han ◽  
Songbai Xue ◽  
Renli Fu ◽  
Lihao Lin ◽  
Zhongqiang Lin ◽  
...  

This work focused on the influence of hydrogen content on the microstructure and mechanical properties of ER5183 Al-Mg-Mn alloy wires for aluminum alloy welding. The hydrogen content of the ER5183 wires was measured, the macroscopic and microscopic morphologies of fractures were observed as well as the microstructure of the wires, and the tensile strength of the wires was also tested and investigated. The experimental results demonstrated three typical irregular macroscopic fractures of the wires appeared during the drawing process when the hydrogen content exceeded 0.23 μg/g. In the meantime, the aggregated pores were observed in the microstructure of the ϕ5.2 mm wire with the hydrogen content of 0.38 μg/g. Such defects may become the origin of cracks in subsequent processing and tensile tests. Moreover, higher hydrogen content in the ϕ5.2 mm welding wire will bring obvious changes in the fracture surface, which are internal cracks and micropores replacing the original uniform and compact dimples. With the higher hydrogen content, the tensile strength and plastic strain rate of ϕ1.2 mm wires would decrease. At the same time, unstable crack propagation would occur during the process of plastic deformation, leading to fracture. Considering the mechanical properties and microstructure, the hydrogen content of the ER5183 wires should be controlled below 0.23 μg/g.


Sign in / Sign up

Export Citation Format

Share Document