scholarly journals On the Chip Shaping and Surface Topography When Finish Cutting 17-4 PH Precipitation-Hardening Stainless Steel under Near-Dry Cutting Conditions

Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2188 ◽  
Author(s):  
Kamil Leksycki ◽  
Eugene Feldshtein ◽  
Grzegorz M. Królczyk ◽  
Stanisław Legutko

This study describes the surface topography of the 17-4 PH stainless steel machined under dry, wet and near-dry cutting conditions. Cutting speeds of 150–500 m/min, feeds of 0.05–0.4 mm/rev and 0.5 mm depth of cutting were applied. The research was based on the ‘parameter space investigation’ method. Surface roughness parameters, contour maps and material participation curves were analysed using the optical Sensofar S Neox 3D profilometer and the effect of feed, cutting speed and their mutual interaction was noticed. Changes in chip shape depending on the processing conditions are shown. Compared to dry machining, a reduction of Sa, Sq and Sz parameters of 38–48% was achieved for near-dry condition. For lower feeds and average cutting speeds valleys and ridges were observed on the surface machined under dry, wet and near-dry conditions. For higher feeds and middle and higher cutting speeds, deep valleys and high ridges were observed on the surface. Depending on the processing conditions, different textures of the machined surface were registered, particularly anisotropic mixed, periodic and periodically determined. In the Sa range of 0.4–0.8 μm for dry and wet conditions the surface isotropy is ~20%, under near-dry conditions it is ~60%.

2012 ◽  
Vol 723 ◽  
pp. 247-251
Author(s):  
Hai Dong Yang ◽  
Zhi Ding

Austenitic stainless steel has poor cutting performance, especially when the inappropriate choice of tool materials and cutting parameters, cutting tool life will be shortened and the quality of machined surface is poor. In this paper, 0Cr18Ni9 stainless steel dry cutting tests had been done with nano-TiAlN coated carbide blade YGB202, the relationship between tool life and cutting speed, tool wear mechanism had been analyzed. In order to improve the processing efficiency and tool life, process parameters were optimized.


2021 ◽  
Vol 19 (2) ◽  
pp. 335
Author(s):  
Kamil Leksycki ◽  
Eugene Feldshtein ◽  
Michał Ociepa

The article presents the results of the research on the plastic flow in the finish turning of 316L (X2CrNiMo17-12-2) stainless steel under dry cutting conditions. The steel was turned at variable cutting speeds and a constant depth of cut. The investigations were based on the Parameter Space Investigation method (PSI) which allowed minimizing the number of test points. It was observed that the phenomenon of slide flow occurred in the range of cutting speeds and feed rates under examination and its intensity depended on the values of these parameters. The phenomenon was more intense in the range of medium and higher cutting speeds and lower feed rates. The side flow results in significant changes between the real and theoretical values of roughness parameter Rz, which range from 40% up to even 330%.


2020 ◽  
Vol 38 (11A) ◽  
pp. 1593-1601
Author(s):  
Mohammed H. Shaker ◽  
Salah K. Jawad ◽  
Maan A. Tawfiq

This research studied the influence of cutting fluids and cutting parameters on the surface roughness for stainless steel worked by turning machine in dry and wet cutting cases. The work was done with different cutting speeds, and feed rates with a fixed depth of cutting. During the machining process, heat was generated and effects of higher surface roughness of work material. In this study, the effects of some cutting fluids, and dry cutting on surface roughness have been examined in turning of AISI316 stainless steel material. Sodium Lauryl Ether Sulfate (SLES) instead of other soluble oils has been used and compared to dry machining processes. Experiments have been performed at four cutting speeds (60, 95, 155, 240) m/min, feed rates (0.065, 0.08, 0.096, 0.114) mm/rev. and constant depth of cut (0.5) mm. The amount of decrease in Ra after the used suggested mixture arrived at (0.21µm), while Ra exceeded (1µm) in case of soluble oils This means the suggested mixture gave the best results of lubricating properties than other cases.


1970 ◽  
Vol 2 (1) ◽  
Author(s):  
A.K.M.N. Amin, M.A. Rizal, and M. Razman

Machine tool chatter is a dynamic instability of the cutting process. Chatter results in poor part surface finish, damaged cutting tool, and an irritating and unacceptable noise. Exten¬sive research has been undertaken to study the mechanisms of chatter formation. Efforts have been also made to prevent the occurrence of chatter vibration. Even though some progress have been made, fundamental studies on the mechanics of metal cutting are necessary to achieve chatter free operation of CNC machine tools to maintain their smooth operating cycle. The same is also true for Vertical Machining Centres (VMC), which operate at high cutting speeds and are capable of offering high metal removal rates. The present work deals with the effect of work materials, cutting conditions and diameter of end mill cutters on the frequency-amplitude characteristics of chatter and on machined surface roughness. Vibration data were recorded using an experimental rig consisting of KISTLER 3-component dynamometer model 9257B, amplifier, scope meters and a PC.  Three different types of vibrations were observed. The first type was a low frequency vibration, associated with the interrupted nature of end mill operation. The second type of vibration was associated with the instability of the chip formation process and the third type was due to chatter. The frequency of the last type remained practically unchanged over a wide range of cutting speed.  It was further observed that chip-tool contact processes had considerable effect on the roughness of the machined surface.Key Words: Chatter, Cutting Conditions, Stable Cutting, Surface Roughness.


2013 ◽  
Vol 315 ◽  
pp. 413-417 ◽  
Author(s):  
Mohsen Marani Barzani ◽  
Mohd Yusof Noordin ◽  
Ali Akhavan Farid ◽  
Saaed Farahany ◽  
Ali Davoudinejad

Surface roughness is an important output in different manufacturing processes. Its characteristic affects directly the performance of mechanical components and the fabrication cost. In this current work, an experimental investigation was conducted to determine the effects of various cutting speeds and feed rates on surface roughness in turning the untreated and Sb-treated Al-11%Si alloys. Experimental trials carried out using PVD TIN coated inserts. Experiments accomplished under oblique dry cutting when three different cutting speeds have been used at 70, 130 and 250 m/min with feed rates of 0.05, 0.1 and 0.15 mm/rev, whereas depth of cut kept constant at 0.05 mm. The results showed that Sb-treated Al-11%Si alloys have poor surface roughness in comparison to untreated Al-11%Si alloy. The surface roughness values reduce with cutting speed increment from 70 m/min to 250 m/min. Also, the surface finish deteriorated with increase in feed rate from 0.5 mm/rev to 0.15 mm/rev.


2020 ◽  
Vol 8 (2) ◽  
Author(s):  
Yunn-Shiuan Liao ◽  
Tsung-Hsien Li ◽  
Yi-Chen Liu

Abstract Application of liquid carbon dioxide to improve cutting performance in micro-end milling of Ti-6Al-4V titanium alloy was proposed in this study. It was found that the machined roughness decreased with the cutting speed as observed in the conventional cutting, when a 0.5 mm diameter end milling cutter was used in dry cutting. But, the tiny and shattered chips produced by the use of 0.3 mm diameter cutter could adhere on the machined surface and deteriorate surface finish, if the cutting speed was higher than 40 m/min. Cutting temperature was effectively decreased by applying liquid carbon dioxide during micromilling, which in turn reduced the amount of chips adhering on the machined surface and lowered flank wear. The surface roughness Ra at a cutting speed of 70 m/min was improved from 0.09 μm under dry cutting to 0.04 μm under the liquid carbon dioxide assisted cutting condition. And there were no flank wear and very few burrs left on the machined surface for the condition used in the experiment. The height of the burrs was only 25% of that under dry cutting. More, minimum quantity lubrication (MQL) was proposed to be applied together with the liquid carbon dioxide to enhance lubrication effect. It was noted that the machined surface roughness was further decreased by 15% as compared with that when the liquid carbon dioxide was applied alone. The height of burrs was reduced from 32 μm to 16 μm.


2013 ◽  
Vol 554-557 ◽  
pp. 2093-2100 ◽  
Author(s):  
Domenico Umbrello

Machining of advancedaerospace materials have grown in the recent years although the hard-to-machinecharacteristics of alloys like titanium or nickel based alloys cause highercutting forces, rapid tool wear, and more heat generation. This paper presentsan experimental evaluation of machining ofInconel718alloy under dry conditions at varying of cutting speeds and feed rates.The influence of the cutting conditions on surface integrity was studied interms of surface roughness, affected layer, grain size variations and phasechanges/modification. Also, the machining process performance was evaluatedthrough the power consumption and tool-wear.


2013 ◽  
Vol 589-590 ◽  
pp. 117-121 ◽  
Author(s):  
Xiu Li Fu ◽  
Zeng Hui An ◽  
Yang Qiao ◽  
Xiu Hua Men

Work-hardening of machined surface plays an important role in the evaluation of surface quality and performance of wear resistance in the process of machining components. In this study work-hardening of machined surface during milling 7050-T7451 aluminum alloy is investigated using micro-hardness experiments under different cutting conditions. Moreover, the wear resistance of machined surface including wear quantity and friction coefficient are obtained and studied by means of high speed ring-block friction-wear tester. The work-hardening and wear resistance are particularly sensitive to cutting speed. Friction coefficient has marked drop trends and the tendency of wear quantity is ascend in first and descend at last as work-hardening increases. The comparison of wear resistance under different cutting conditions shows that the wear resistance of machined surface can be directly affected by work-hardening and machined surface obtained by high speed milling with higher micro-hardness have more superior in wear resistance performance.


2013 ◽  
Vol 10 (1) ◽  
pp. 12-17
Author(s):  
Karol Vasilko

Abstract Tendencies towards increasing cutting speeds during machining can be observed recently. The first wave of increasing cutting speeds occured in the 60s of the previous century. However, suitable tool material was not available at that time. Increasing cutting speed is possible only following the development of cutting material, resistant against high temperatures, abrasive, adhesive and diffusive wear. It is obvious that the process of chip creation, quality of machined surface, dynamics of machining process and temperature of cutting change considerably with cutting speed. To be able to apply higher cutting speeds in production machining, it is necessary to know the dependence of those characteristics on cutting speed. Some of those phenomena, which are linked with cutting speed, will be explained in the paper. Key words: machining, cutting speed, tool durability, surface quality


2013 ◽  
Vol 685 ◽  
pp. 68-75 ◽  
Author(s):  
Salman Pervaiz ◽  
Ibrahim Deiab ◽  
Basil Darras ◽  
Amir Rashid ◽  
Mihai Nicolescu

Titanium alloys are labeled as difficult to materials because of their low machinability rating. This paper presents an experimental study of machining Ti-6Al-4V under turning operation. All machining tests were conducted under dry, mist and flood cooling approaches by using a TiAlN coated carbide cutting inserts. All cutting experiments were conducted using high and low levels of cutting speeds and feed rates. The study compared surface finish of machined surface and flank wear at cutting edge under dry, mist and flood cooling approaches. Scanning electron microscopy was utilized to investigate the flank wear at cutting edge under various cooling approaches and cutting conditions. Investigation revealed that TiAlN coated carbides performed comparatively better at higher cutting speed.


Sign in / Sign up

Export Citation Format

Share Document