scholarly journals The Influence of Severe Plastic Deformation and Subsequent Annealing on the Microstructure and Hardness of a Cu–Cr–Zr Alloy

Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2241 ◽  
Author(s):  
Garima Kapoor ◽  
Tibor Kvackaj ◽  
Anita Heczel ◽  
Jana Bidulská ◽  
Róbert Kočiško ◽  
...  

A Cu–1.1%Cr–0.04%Zr (wt.%) alloy was processed by severe plastic deformation (SPD) using the equal channel angular pressing (ECAP) technique at room temperature (RT). It was found that when the number of passes increased from one to four, the dislocation density significantly increased by 35% while the crystallite size decreased by 32%. Subsequent rolling at RT did not influence considerably the crystallite size and dislocation density. At the same time, cryorolling at liquid nitrogen temperature yielded a much higher dislocation density. All the samples contained Cr particles with an average size of 1 µm. Both the size and fraction of the Cr particles did not change during the increase in ECAP passes and the application of rolling after ECAP. The hardness of the severely deformed Cu alloy samples can be well correlated to the dislocation density using the Taylor equation. Heat treatment at 430 °C for 30 min in air caused a significant reduction in the dislocation density for all the deformed samples, while the hardness considerably increased. This apparent contradiction can be explained by the solute oxygen hardening, but the annihilation of mobile dislocations during annealing may also contribute to hardening.

2012 ◽  
Vol 622-623 ◽  
pp. 705-709 ◽  
Author(s):  
U. Mohammed Iqbal ◽  
V.S. Senthil Kumar

Severe plastic deformation is one of the emerging and promising techniques applied to bulk materials to produce fine grain structure with attractive properties. This study aims to investigate the effect of extrusion parameters like extrusion temperature, number of passes on the equal channel angular pressing and twist extrusion forming behavior of AA7075-T6 Aluminum alloy by hot extrusion process. AA7075-T6 samples of 70x28x18 mm cross sections extruded by equal channel angular pressing and twist extrusion process was subjected to microstructure analysis, hardness and tensile tests in order to determine their mechanical properties. As a result of the experiments, it was determined that twist extrusion leads to more grain refinement at high temperatures with more number of passes compared to equal channel angular pressing. SEM micrographs show that there is severe orientation of the grains facilitated by the extrusion process which enhances the strength. The dense banding of the grains had effected in marginal hardness enhancement in the matrix of the specimens processed by twist extrusion and equal channel angular extrusion process.


2012 ◽  
Vol 715-716 ◽  
pp. 994-999 ◽  
Author(s):  
Galina G. Zakharova ◽  
Elena G. Astafurova ◽  
Evgeny V. Naydenkin ◽  
Georgy I. Raab ◽  
Sergey V. Dobatkin

The present work deals with the evolution of mechanical properties and structure of low-carbon Fe-1,12Mn-0,08V-0,07Ti-0,1C (wt.%) steel after severe plastic deformation (SPD) and high-temperature annealing. Steel in initial ferritic-pearlitic state was deformed by equal channel angular pressing (ECAP) at T=200°C and high pressure torsion (HPT) at room temperature. The evolution of ultrafine grained structure and its thermal stability were investigated after annealing at 400-700°C for 1 hour. The results shown that SPD leads to formation of structure with an average size of (sub-) grain of 260 nm after ECAP and 90 nm after HPT. Ultrafine grained structures produced by SPD reveal a high thermal stability up to 500°C after ECAP and 400°C after HPT. At higher annealing temperatures a growth of structural elements and a decrease in microhardness were observed.


2010 ◽  
Vol 667-669 ◽  
pp. 325-330 ◽  
Author(s):  
Galina G. Zakharova ◽  
Elena G. Astafurova ◽  
Evgeny V. Naydenkin ◽  
Georgy I. Raab ◽  
Sergey V. Dobatkin

The present work deals with the evolution of mechanical properties and structure of low-carbon Fe-1,12Mn-0,08V-0,07Ti-0,1C (wt.%) steel after severe plastic deformation (SPD) and high-temperature annealing. Steel in initial ferritic-pearlitic state was deformed by equal channel angular pressing (ECAP) at T=200°C and high pressure torsion (HPT) at room temperature. The evolution of ultrafine grained structure and its thermal stability were investigated after annealing at 400-700°C for 1 hour. The results shown that SPD leads to formation of structure with an average size of (sub-) grain of 260 nm after ECAP and 90 nm after HPT. Ultrafine grained structures produced by SPD reveal a high thermal stability up to 500°C after ECAP and 400°C after HPT. At higher annealing temperatures a growth of structural elements and a decrease in microhardness were observed.


2018 ◽  
Vol 1 (1) ◽  
pp. 77-90
Author(s):  
Walaa Abdelaziem ◽  
Atef Hamada ◽  
Mohsen A. Hassan

Severe plastic deformation is an effective method for improving the mechanical properties of metallic alloys through promoting the grain structure. In the present work, simple cyclic extrusion compression technique (SCEC) has been developed for producing a fine structure of cast Al-1 wt. % Cu alloy and consequently enhancing the mechanical properties of the studied alloy. It was found that the grain structure was significantly reduced from 1500 µm to 100 µm after two passes of cyclic extrusion. The ultimate tensile strength and elongation to failure of the as-cast alloy were 110 MPa and 12 %, respectively. However, the corresponding mechanical properties of the two pass CEC deformed alloy are 275 MPa and 35%, respectively. These findings ensure that a significant improvement in the grain structure has been achieved. Also, cyclic extrusion deformation increased the surface hardness of the alloy by 49 % after two passes. FE-simulation model was adopted to simulate the deformation behavior of the material during the cyclic extrusion process using DEFORMTM-3D Ver11.0. The FE-results revealed that SCEC technique was able to impose severe plastic strains with the number of passes. The model was able to predict the damage, punch load, back pressure, and deformation behavior.


Author(s):  
Андрей Дмитриевич Бухтеев ◽  
Виктория Буянтуевна Бальжиева ◽  
Анна Романовна Тарасова ◽  
Фидан Гасанова ◽  
Светлана Викторовна Агасиева

В данной статье рассматривается применение и технологии получения наноструктурированных поверхностей. Рассмотрены такие методы как компактирование порошков (изостатическое прессование, метод Гляйтера), интенсивная пластическая деформация (угловое кручение, равноканальное угловое прессование, обработка давлением многослойных композитов) и модификация поверхности (лазерная обработка, ионная бомбардировка). This article discusses the application and technology for obtaining nano-structured surfaces. Methods such as compaction of powders (isostatic pressing, Gleiter method), severe plastic deformation (angular torsion, equal-channel angular pressing, pressure treatment of multilayer composites) and surface modification (laser treatment, ion bombardment) are considered.


Author(s):  
H Jafarzadeh ◽  
K Abrinia

The microstructure evolution during recently developed severe plastic deformation method named repetitive tube expansion and shrinking of commercially pure AA1050 aluminum tubes has been studied in this paper. The behavior of the material under repetitive tube expansion and shrinking including grain size and dislocation density was simulated using the finite element method. The continuous dynamic recrystallization of AA1050 during severe plastic deformation was considered as the main grain refinement mechanism in micromechanical constitutive model. Also, the flow stress of material in macroscopic scale is related to microstructure quantities. This is in contrast to the previous approaches in finite element method simulations of severe plastic deformation methods where the microstructure parameters such as grain size were not considered at all. The grain size and dislocation density data were obtained during the simulation of the first and second half-cycles of repetitive tube expansion and shrinking, and good agreement with experimental data was observed. The finite element method simulated grain refinement behavior is consistent with the experimentally obtained results, where the rapid decrease of the grain size occurred during the first half-cycle and slowed down from the second half-cycle onwards. Calculations indicated a uniform distribution of grain size and dislocation density along the tube length but a non-uniform distribution along the tube thickness. The distribution characteristics of grain size, dislocation density, hardness, and effective plastic strain were consistent with each other.


2011 ◽  
Vol 409 ◽  
pp. 597-602
Author(s):  
Yuichi Mizuno ◽  
Kenji Okushiro ◽  
Yoshiyuki Saito

Grain boundary migration in materials under severe plastic deformation was simulated by the phase field methods. The interface energy and dislocation density on growth kinetics were simulated on systems of 2-dimensional lattice. .In inhomogeneous systems grain size distributions in simulated grain structures were binodal distributions. The classification of the solution of differential equations based on the mean-field Hillert model describing temporal evolution of the scaled grain size distribution function was in good agreement with those given by the Computer simulations. Effect of dislocation on thermodynamic stability was taken into consideration. Dislocation density distribution was calculated by a equation based on the diffusion-reaction equation.. Scaled grain size distribution was known to be affected by the dislocation.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 1621-1626
Author(s):  
HYOUNG SEOP KIM

The technique of severe plastic deformation (SPD) enables one to produce metals and alloys with an ultrafine grain size of about 100 nm and less. As the mechanical properties of such ultrafine grained materials are governed by the plastic deformation during the SPD process, the understanding of the stress and strain development in a workpiece is very important for optimizing the SPD process design and for microstructural control. The objectives of this work is to present a constitutive model based on the dislocation density and dislocation cell evolution for large plastic strains as applied to equal channel angular pressing (ECAP). This paper briefly introduces the constitutive model and presents the results obtained with this model for ECAP by the finite element method.


Sign in / Sign up

Export Citation Format

Share Document