scholarly journals Direct Transformation of Crystalline MoO3 into Few-Layers MoS2

Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2293
Author(s):  
Felix Carrascoso ◽  
Gabriel Sánchez-Santolino ◽  
Chun-wei Hsu ◽  
Norbert M. Nemes ◽  
Almudena Torres-Pardo ◽  
...  

We fabricated large-area atomically thin MoS2 layers through the direct transformation of crystalline molybdenum trioxide (MoO3) by sulfurization at relatively low temperatures. The obtained MoS2 sheets are polycrystalline (~10–20 nm single-crystal domain size) with areas of up to 300 × 300 µm2, 2–4 layers in thickness and show a marked p-type behavior. The synthesized films are characterized by a combination of complementary techniques: Raman spectroscopy, X-ray diffraction, transmission electron microscopy and electronic transport measurements.

Author(s):  
Felix Carrascoso ◽  
Gabriel Sanchez-Santolino ◽  
Chun-wei Hsu ◽  
Norbert M. Nemes ◽  
Almudena Torres-Pardo ◽  
...  

We fabricate large-area atomically thin MoS2 layers through the direct transformation of crystalline molybdenum trioxide (MoO3) by sulfurization at relatively low temperatures. The obtained MoS2 sheets are polycrystalline (~10-20 nm single-crystal domain size) with areas of up to 300×300 µm2 with 2-4 layers in thickness and show a marked p-type behaviour. The synthesized films are characterized by a combination of complementary techniques: Raman spectroscopy, X-ray diffraction, transmission electron microscopy and electronic transport measurements.


1996 ◽  
Vol 449 ◽  
Author(s):  
P. Kung ◽  
A. Saxler ◽  
D. Walker ◽  
X. Zhang ◽  
R. Lavado ◽  
...  

ABSTRACTWe present the metalorganic chemical vapor deposition growth, n-type and p-type doping and characterization of AlxGa1-xN alloys on sapphire substrates. We report the fabrication of Bragg reflectors and the demonstration of two dimensional electron gas structures using AlxGa1-xN high quality films. We report the structural characterization of the AlxGa1-xN / GaN multilayer structures and superlattices through X-ray diffraction and transmission electron microscopy. A density of screw and mixed threading dislocations as low as 107 cm-2 was estimated in AlxGa1-xN / GaN structures. The realization of AlxGa1-xN based UV photodetectors with tailored cut-off wavelengths from 365 to 200 nm are presented.


2021 ◽  
Vol 1035 ◽  
pp. 1043-1049
Author(s):  
Di Xiang ◽  
Chang Long Shao

A simple route has been developed for the synthesis of Ag2O/ZnO heterostructures and the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and photoluminescence (PL) spectroscopy analysis. Considering the porous structure of Ag2O/ZnO, the photocatalytic degradation for the organic dyes, such as eosin red (ER), methyl orange (MO), methylene blue (MB) and rhodamine B (RhB), under visible light irradiation was investigated in detail. Noticeably, Ag2O/ZnO just took 40 min to degrade 96 % MB. The rate of degradation using the Ag2O/ZnO heterostructures was 2.3 times faster than that of the bare porous ZnO nanospheres under visible light irradiation due to that the recombination of the photogenerated charge was inhibited greatly in the p-type Ag2O and n-type ZnO semiconductor. So the Ag2O/ZnO heterostuctures showed the potential application on environmental remediation.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
H. Letifi ◽  
Y. Litaiem ◽  
D. Dridi ◽  
S. Ammar ◽  
R. Chtourou

In this paper, we have reported a novel photocatalytic study of vanadium-doped SnO2 nanoparticles (SnO2: V NPs) in rhodamine B degradation. These NPs have been prepared with vanadium concentrations varying from 0% to 4% via the coprecipitation method. Structural, morphological, and optical properties of the prepared nanoparticles have been investigated by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscope (TEM), and UV-Vis and photoluminescence (PL) spectroscopy. Structural properties showed that both undoped and SnO2: V NPs exhibited the tetragonal structure, and the average crystal size has been decreased from 20 nm to 10 nm with the increasing doping level of vanadium. Optical studies showed that the absorption edge of SnO2: V NPs showed a redshift with the increasing vanadium concentration. This redshift leads to the decrease in the optical band gap from 3.25 eV to 2.55 eV. A quenching in luminescence intensity has been observed in SnO2: V NPs, as compared to the undoped sample. Rhodamine B dye (RhB) has been used to study the photocatalytic degradation of all synthesized NPs. As compared to undoped SnO2 NPs, the photocatalytic activity of SnO2: V NPs has been improved. RhB dye was considerably degraded by 95% within 150 min over on the SnO2: V NPs.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Carmen Steluta Ciobanu ◽  
Simona Liliana Iconaru ◽  
Florian Massuyeau ◽  
Liliana Violeta Constantin ◽  
Adrian Costescu ◽  
...  

The luminescent europium-doped hydroxyapatite (Eu:HAp, Ca10−xEux(PO4)6(OH)2) with0≤x≤0.2nanocrystalline powders was synthesized by coprecipitation. The structural, morphological, and textural properties were well characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The vibrational studies were performed by Fourier transform infrared, Raman, and photoluminescence spectroscopies. The X-ray diffraction analysis revealed that hydroxyapatite is the unique crystalline constituent of all the samples, indicating that Eu has been successfully inserted into the HAp lattice. Eu doping inhibits HAp crystallization, leading to a decrease of the average crystallite size from around 20 nm in the undoped sample to around 7 nm in the sample with the highest Eu concentration. Furthermore, the samples show the characteristic5D0→7F0transition observed at 578 nm related to Eu3+ions distributed on Ca2+sites of the apatitic structure.


1995 ◽  
Vol 378 ◽  
Author(s):  
R. H. Thompson ◽  
V. Krishnamoorthy ◽  
J. Liu ◽  
K. S. Jones

AbstractP-type (100) silicon wafers were implanted with 28Si+ ions at an energy of 50 keV and to doses of 1 × 1015, 5 × 1015 and 1 × 1016 cm−2, respectively, and annealed in a N2 ambient at temperatures ranging from 700°C to 1000°C for times ranging from 15 minutes to 16 hours. The resulting microstructure consisted of varying distributions of Type II end of range dislocation loops. The size distribution of these loops was quantified using plan-view transmission electron microscopy and the strain arising from these loops was investigated using high resolution x-ray diffraction. The measured strain values were found to be constant in the loop coarsening regime wherein the number of atoms bound by the loops remained a constant. Therefore, an empirical constant of 7.7 × 10−12 interstitial/ppm of strain was evaluated to relate the number of interstitials bound by these dislocation loops and the strain. This value was used successfully in estimating the number of interstitials bound by loops at the various doses studied provided the annealing conditions were such that the loop microstructure was in the coarsening or dissolution regime.


2009 ◽  
Vol 1228 ◽  
Author(s):  
Masataka Hakamada ◽  
Yasumasa Chino ◽  
Mamoru Mabuchi

AbstractMetallic nanoporous architecture can be spontaneously attained by dealloying of a binary alloy. The nanoporous architecture can be often fabricated in noble metals such as Au and Pt. In this study, nanoporous Ni, Ni-Cu are fabricated by dealloying rolled Ni-Mn and Cu-Ni-Mn alloys, respectively. Unlike conventional Raney nickel composed of brittle Ni-Al or Cu-Al intermetallic compounds, the initial alloys had good workability probably because of their fcc crystal structures. After the electrolysis of the alloys in (NH4)2SO4 aqueous solution, nanoporous architectures of Ni and Ni-Cu with pore and ligament sizes of 10–20 nm were confirmed by scanning electron microscopy and transmission electron microscopy. X-ray diffraction analyses suggested that Ni and Cu atoms form a homogeneous solid solution in the Ni-Cu nanoporous architecture. The ligament sizes of nanoporous Ni and Ni-Cu were smaller than that of nanoporous Cu, reflecting the difference between diffusivities of Ni and Cu at solid/electrolyte interface. Ni can reduce the pore and ligament sizes of resulting nanoporous architecture when added to initial Cu-Mn alloys.


1999 ◽  
Vol 14 (4) ◽  
pp. 1570-1575 ◽  
Author(s):  
G. Ennas ◽  
G. Marongiu ◽  
A. Musinu ◽  
A. Falqui ◽  
P. Ballirano ◽  
...  

Homogeneous maghemite (γ–Fe2O3) nanoparticles with an average crystal size around 5 nm were synthesized by successive hydrolysis, oxidation, and dehydration of tetrapyridino-ferrous chloride. Morphological, thermal, and structural properties were investigated by transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and x-ray diffraction (XRD) techniques. Rietveld refinement indicated a cubic cell. The superstructure reflections, related to the ordering of cation lattice vacancies, were not detected in the diffraction pattern. Kinetics of the solid-state phase transition of nanocrystalline maghemite to hematite (α–Fe2O3), investigated by energy dispersive x-ray diffraction (EDXRD), indicates that direct transformation from nanocrystalline maghemite to microcrystalline hematite takes place during isothermal treatment at 385 °C. This temperature is lower than that observed both for microcrystalline maghemite and for nanocrystalline maghemite supported on silica.


2006 ◽  
Vol 21 (3) ◽  
pp. 597-607 ◽  
Author(s):  
S. Venkataraman ◽  
S. Scudino ◽  
J. Eckert ◽  
T. Gemming ◽  
C. Mickel ◽  
...  

Cu47Ti33Zr11Ni8Si1 metallic glass powder was prepared by gas atomization. Decomposition in the amorphous alloy and primary crystallization has been studied by differential scanning calorimetry (DSC), x-ray diffraction (XRD), and transmission electron microscopy (TEM). The glassy powder exhibits a broad DSC exotherm prior to bulk crystallization. Controlled annealing experiments reveal that this exotherm corresponds to a combination of structural relaxation and nanocrystallization. A uniform featureless amorphous contrast is observed in the TEM prior to the detection of nanocrystals of 4–6 nm in size. High-resolution TEM studies indicate that this nanocrystalline phase has a close crystallographic relationship with the γ–CuTi phase having a tetragonal structure. The product of the main crystallization event is also nanocrystalline, hexagonal Cu51Zr14, having dimensions of 20 nm. However, there is no evidence for possible amorphous phase separation prior to the nanocrystallization events.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Da Zhang ◽  
Liang Chen ◽  
Chengjing Xiao ◽  
Jing Feng ◽  
Lingmin Liao ◽  
...  

Single-crystal BiOCl nanosheets, with high{001}facets exposed, were synthesized through a facile hydrolysis reaction under general atmospheric pressure, without adding any organic surfactant or agent. The thickness of the BiOCl nanosheets is about 20 nm, and the diameter is arranged from 200 to 400 nm. The structure of the BiOCl nanosheets was characterized by X-ray diffraction, energy disperse X-ray spectrum, transmission electron microscopy, and selective area electron diffraction. Moreover, three different dyes were used as model molecules to test the photocatalytic activity of BiOCl nanosheets under visible light. It was found that the BiOCl nanosheets possess selective photocatalytic behavior as their activity over RhB is much higher than that over MO or MB. Based on the analysis of the experimental results, the potential mechanism was discussed.


Sign in / Sign up

Export Citation Format

Share Document