scholarly journals Hybrid System Coupling Moving Bed Bioreactor with UV/O3 Oxidation and Membrane Separation Units for Treatment of Industrial Laundry Wastewater

Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2648
Author(s):  
Sylwia Mozia ◽  
Magdalena Janus ◽  
Sławomira Bering ◽  
Krzysztof Tarnowski ◽  
Jacek Mazur ◽  
...  

This paper describes the investigations on the possibilities of treatment of wastewater generated in an industrial laundry with application of a combined biological-photooxidation- membrane system aimed at water recycle and reuse. The two treatment schemes were compared: 1) scheme A consisting of a treatment in a moving bed biological reactor (MBBR) followed by microfiltration (MF) and nanofiltration (NF), and 2) scheme B comprising MBBR followed by oxidation by photolysis enhanced with in situ generated O3 (UV/O3) after which MF and NF were applied. The removal efficiency in MBBR reached 95–97% for the biochemical oxygen demand; 90–93% for the chemical oxygen demand and 89–99% for an anionic and a nonionic surfactants. The application of UV/O3 system allowed to decrease the content of the total organic carbon by 68% after 36 h of operation with a mineralization rate of 0.36 mg/L·h. Due to UV/O3 pretreatment, a significant mitigation of membrane fouling in the case of both MF and NF processes was achieved. The MF permeate flux in the system B was over two times higher compared to that in the system A. Based on the obtained results it was concluded that the laundry wastewater pretreated in the MBBR-UV/O3-MF-NF system could be recycled to any stage of the laundry process.

Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 369
Author(s):  
Shengji Xia ◽  
Xinran Zhang ◽  
Yuanchen Zhao ◽  
Fibor J. Tan ◽  
Pan Li ◽  
...  

The membrane separation process is being widely used in water treatment. It is very important to control membrane fouling in the process of water treatment. This study was conducted to evaluate the efficiency of a pre-oxidation-coagulation flat ceramic membrane filtration process using different oxidant types and dosages in water treatment and membrane fouling control. The results showed that under suitable concentration conditions, the effect on membrane fouling control of a NaClO pre-oxidation combined with a coagulation/ceramic membrane system was better than that of an O3 system. The oxidation process changed the structure of pollutants, reduced the pollution load and enhanced the coagulation process in a pre-oxidation-coagulation system as well. The influence of the oxidant on the filtration system was related to its oxidizability and other characteristics. NaClO and O3 performed more efficiently than KMnO4. NaClO was more conducive to the removal of DOC, and O3 was more conducive to the removal of UV254.


Author(s):  
Sina Jahangiri Mamouri ◽  
Volodymyr V. Tarabara ◽  
André Bénard

Deoiling of produced or impaired waters associated with oil and gas production represents a significant challenge for many companies. Centrifugation, air flotation, and hydrocyclone separation are the current methods of oil removal from produced water [1], however the efficiency of these methods decreases dramatically for droplets smaller than approximately 15–20 μm. More effective separation of oil-water mixtures into water and oil phases has the potential to both decrease the environmental footprint of the oil and gas industry and improve human well-being in regions such as the Gulf of Mexico. New membrane separation processes and design of systems with advanced flow management offer tremendous potential for improving oil-water separation efficacy. However, fouling is a major challenge in membrane separation [2]. In this study, the behavior of oil droplets and their interaction with crossflow filtration (CFF) membranes (including membrane fouling) is studied using computational fluid dynamics (CFD) simulations. A model for film formation on a membrane surface is proposed for the first time to simulate film formation on membrane surfaces. The bulk multiphase flow is modeled using an Eulerian-Eulerian multiphase flow model. A wall film is developed from mass and momentum balances [3] and implemented to model droplet deposition and membrane surface blockage. The model is used to predict film formation and subsequent membrane fouling, and allow to estimate the actual permeate flux. The results are validated using available experimental data.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2415
Author(s):  
Taegyun Kwon ◽  
Jinyoung Chun

Although water, air, and other resources are abundant on earth, they have been subjected to strict environmental regulations. This is because of their limitation of availability for human consumption. In the separation industry, the membrane system was introduced to increase the amount of resources available to mankind. Experts used an easy-to-use polymeric material to design several membranes with porous structures for wastewater treatment, gas separation, and chemical removal; consequently, they succeeded in obtaining positive results. However, past polymeric membranes exhibited a chronic drawback such that it was difficult to simultaneously augment the permeate flux and improve its selectivity toward certain substances. Because of the trade-off relationship that existed between permeability and selectivity, the membrane efficiency was not very good; consequently, the cost-effectiveness was significantly hindered because there was no other alternative than to replace the membrane in order to maintain its initial characteristics steadily. This review begins with the introduction of a polymer nanocomposite (PNC) membrane that has been designed to solve the chronic problem of polymeric membranes; subsequently, the stimuli-responsive PNC membrane is elucidated, which has established itself as a popular topic among researchers in the separation industry for several decades. Furthermore, we have listed the different types and examples of stimuli-responsive PNC membranes, which can be switched by external stimuli, while discussing the future direction of the membrane separation industry.


2017 ◽  
Vol 34 (1) ◽  
Author(s):  
Rakesh Baghel ◽  
Sushant Upadhyaya ◽  
Kailash Singh ◽  
Satyendra P. Chaurasia ◽  
Akhilendra B. Gupta ◽  
...  

AbstractThe main aim of this article is to provide a state-of-the-art review of the experimental studies on vacuum membrane distillation (VMD) process. An introduction to the history of VMD is carried out along with the other membrane distillation configurations. Recent developments in process, characterization of membrane, module design, transport phenomena, and effect of operating parameters on permeate flux are discussed for VMD in detail. Several heat and mass transfer correlations obtained by various researchers for different VMD modules have been discussed. The impact of membrane fouling with its control in VMD is discussed in detail. In this paper, temperature polarization coefficient and concentration polarization coefficient are elaborated in detail. Integration of VMD with other membrane separation processes/industrial processes have been explained to improve the performance of the system and make it more energy efficient. A critical evaluation of the VMD literature is incorporated throughout this review.


2021 ◽  
Author(s):  
Westphalen Dornelas Camara Heloisa

Membrane separation processes have been more widely applied to industrial activities, especially in water and wastewater treatment. However, there are still challenges associated to the use of membranes. Concentration polarization and fouling can cause significant permeate flux decay during the filtration process, hindering its efficiency and increasing cost. Among many strategies, the combination of membrane filtration with ultrasound (US) application has shown promising results in reducing membrane fouling. The main goal of this research was to identify the effect of US frequency, US power intensity and feed solution concentration on permeate flux during ultrafiltration of simulated latex paint effluent. Maximum increase in permeate flux of 19.7% was obtained by applying 20 kHz and 0.29 W.cm-2 to feed solution with 0.075 wt.% of solid concentration. The effect of feed flow rate was analyzed showing that an increase in feed flowrate is not beneficial to the fouling minimization process. Overall, the application of US improves permeate flux by reducing fouling of ultrafiltration polymeric membrane.


2021 ◽  
Author(s):  
Amirah Syakirah Zahirulain ◽  
Fauziah Marpani ◽  
Syazana Mohamad Pauzi ◽  
'Azzah Nazihah Che Abd Rahim ◽  
Hang Thi Thuy Cao ◽  
...  

Abstract Integration of membrane filtration and biocatalysis has appealing benefits in terms of simultaneous substrate conversion and product separation in one reactor. Nevertheless, the interaction between enzymes and membrane is complex and the mechanism of enzyme docking on membrane is similar to membrane fouling. In this study, focus is given on the assessment of enzyme immobilization mechanism on reverse asymmetric polymer membrane based on the permeate flux data during the procedure. Evaluation of membrane performance in terms of its permeability, fouling mechanisms, enzyme loading, enzyme reusability and biocatalytic productivity were also conducted. Alcohol Dehydrogenase (EC 1.1.1.1), able to catalyze formaldehyde to methanol with subsequent oxidation of NADH to NAD was selected as the model enzyme. Two commercial, asymmetric, flat sheet polymer membranes (PES and PVDF) were immobilized with the enzyme in the reverse mode. Combination of concentration polarization phenomenon and pressure driven filtration successfully immobilized almost 100% of the enzymes in the feed solutions. The biocatalytic membrane reactor recorded more than 90% conversion, stable permeate flux with no enzyme leaching even after 5 cycles. The technique showing promising results to be expanded to continuous membrane separation setup for repeated use of enzymes.


2013 ◽  
Vol 67 (6) ◽  
pp. 1272-1279 ◽  
Author(s):  
Z. L. Kiss ◽  
A. Szép ◽  
S. Kertész ◽  
C. Hodúr ◽  
Z. László

After their use for heating, e.g. in greenhouses, waste thermal waters may cause environmental problems due to their high contents of ions, and in some cases organic matter (associated with an oxygen demand) or toxic compounds. The aims of this work were to decrease the high organic content of waste thermal water by a combination of ozone treatment and membrane separation, and to investigate the accompanying membrane fouling. The results demonstrated that the chemical oxygen demand and the total organic content can be effectively decreased by a combination of ozone pretreatment and membrane filtration. Ozone treatment is more effective for phenol elimination than nanofiltration alone: with a combination of the two processes, 100% elimination efficiency can be achieved. The fouling index b proved to correlate well with the fouling and polarization layer resistances.


2014 ◽  
Vol 70 (1) ◽  
pp. 120-126 ◽  
Author(s):  
Dao Guan ◽  
W. C. Fung ◽  
Frankie Lau ◽  
Chao Deng ◽  
Anthony Leung ◽  
...  

Conventional membrane bioreactor (MBR) systems have increasingly been studied in recent decades. However, their applications have been limited due to their drawbacks such as low flux, membrane fouling, and high operating cost. In this study, a compact macro-filtration MBR (MfMBR) process was developed by using a large pore size membrane to mitigate the membrane fouling problem. A pilot trial of MfMBR process was set up and operated to treat 10 m3/day of saline wastewater within 4 h. The system was operated under an average permeate flux of 13.1 m3/(m2·day) for 74 days. The average total suspended solids, total chemical oxygen demand, biological oxygen demand, total Kjeldahl nitrogen, and total nitrogen removal efficiencies achieved were 94.3, 83.1, 98.0, 93.1, and 63.3%, respectively, during steady-state operation. The confocal laser scanning microscopy image indicated that the backwash could effectively remove the bio-cake and dead bacteria. Thus, the results showed that the MfMBR process, which is essentially a primary wastewater treatment process, had the potential to yield the same high quality effluent standards as the secondary treatment process; thereby suggesting that it could be used as an option when the economic budget and/or land space is limited.


2014 ◽  
Vol 56 (8) ◽  
pp. 1987-1998 ◽  
Author(s):  
Emily Zevenhuizen ◽  
Victoria A. Reed ◽  
M. Safiur Rahman ◽  
Graham A. Gagnon

2021 ◽  
Author(s):  
Westphalen Dornelas Camara Heloisa

Membrane separation processes have been more widely applied to industrial activities, especially in water and wastewater treatment. However, there are still challenges associated to the use of membranes. Concentration polarization and fouling can cause significant permeate flux decay during the filtration process, hindering its efficiency and increasing cost. Among many strategies, the combination of membrane filtration with ultrasound (US) application has shown promising results in reducing membrane fouling. The main goal of this research was to identify the effect of US frequency, US power intensity and feed solution concentration on permeate flux during ultrafiltration of simulated latex paint effluent. Maximum increase in permeate flux of 19.7% was obtained by applying 20 kHz and 0.29 W.cm-2 to feed solution with 0.075 wt.% of solid concentration. The effect of feed flow rate was analyzed showing that an increase in feed flowrate is not beneficial to the fouling minimization process. Overall, the application of US improves permeate flux by reducing fouling of ultrafiltration polymeric membrane.


Sign in / Sign up

Export Citation Format

Share Document