Treatment of waste thermal waters by ozonation and nanofiltraton

2013 ◽  
Vol 67 (6) ◽  
pp. 1272-1279 ◽  
Author(s):  
Z. L. Kiss ◽  
A. Szép ◽  
S. Kertész ◽  
C. Hodúr ◽  
Z. László

After their use for heating, e.g. in greenhouses, waste thermal waters may cause environmental problems due to their high contents of ions, and in some cases organic matter (associated with an oxygen demand) or toxic compounds. The aims of this work were to decrease the high organic content of waste thermal water by a combination of ozone treatment and membrane separation, and to investigate the accompanying membrane fouling. The results demonstrated that the chemical oxygen demand and the total organic content can be effectively decreased by a combination of ozone pretreatment and membrane filtration. Ozone treatment is more effective for phenol elimination than nanofiltration alone: with a combination of the two processes, 100% elimination efficiency can be achieved. The fouling index b proved to correlate well with the fouling and polarization layer resistances.

Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 555
Author(s):  
Renata Żyłła ◽  
Stanisław Ledakowicz ◽  
Tomasz Boruta ◽  
Magdalena Olak-Kucharczyk ◽  
Magdalena Foszpańczyk ◽  
...  

The possibility of removing tetracycline (TRC) from water in an integrated advanced oxidation and membrane filtration process was investigated. Ozonation and UV/H2O2 photooxidation were applied for the destruction of TRC. Six oxidation products (OPs) retaining the structural core of TRC have been identified. One new TRC oxidation product, not reported so far in the literature, was identified—ethyl 4-ethoxybenzoate. All identified OPs were effectively retained on the membrane in the nanofiltration process. However, chemical oxygen demand (COD) measurements of the filtrates showed that in the case of UV/H2O2 oxidation, the OPs passed through the membrane into the filtrate. Various water matrices were used in the research, including the river water untreated and after ozone treatment. It has been shown that organic matter present in surface water can improve pharmaceutical retention, although it contributes to significant membrane fouling. Pre-ozonation of the river water reduced the membrane fouling. The XPS analysis was used to show ozone and H2O2 influence on the top polymer layer of the membrane. It was shown that the oxidants can damage the amide bond of the polyamide.


Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 369
Author(s):  
Shengji Xia ◽  
Xinran Zhang ◽  
Yuanchen Zhao ◽  
Fibor J. Tan ◽  
Pan Li ◽  
...  

The membrane separation process is being widely used in water treatment. It is very important to control membrane fouling in the process of water treatment. This study was conducted to evaluate the efficiency of a pre-oxidation-coagulation flat ceramic membrane filtration process using different oxidant types and dosages in water treatment and membrane fouling control. The results showed that under suitable concentration conditions, the effect on membrane fouling control of a NaClO pre-oxidation combined with a coagulation/ceramic membrane system was better than that of an O3 system. The oxidation process changed the structure of pollutants, reduced the pollution load and enhanced the coagulation process in a pre-oxidation-coagulation system as well. The influence of the oxidant on the filtration system was related to its oxidizability and other characteristics. NaClO and O3 performed more efficiently than KMnO4. NaClO was more conducive to the removal of DOC, and O3 was more conducive to the removal of UV254.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2648
Author(s):  
Sylwia Mozia ◽  
Magdalena Janus ◽  
Sławomira Bering ◽  
Krzysztof Tarnowski ◽  
Jacek Mazur ◽  
...  

This paper describes the investigations on the possibilities of treatment of wastewater generated in an industrial laundry with application of a combined biological-photooxidation- membrane system aimed at water recycle and reuse. The two treatment schemes were compared: 1) scheme A consisting of a treatment in a moving bed biological reactor (MBBR) followed by microfiltration (MF) and nanofiltration (NF), and 2) scheme B comprising MBBR followed by oxidation by photolysis enhanced with in situ generated O3 (UV/O3) after which MF and NF were applied. The removal efficiency in MBBR reached 95–97% for the biochemical oxygen demand; 90–93% for the chemical oxygen demand and 89–99% for an anionic and a nonionic surfactants. The application of UV/O3 system allowed to decrease the content of the total organic carbon by 68% after 36 h of operation with a mineralization rate of 0.36 mg/L·h. Due to UV/O3 pretreatment, a significant mitigation of membrane fouling in the case of both MF and NF processes was achieved. The MF permeate flux in the system B was over two times higher compared to that in the system A. Based on the obtained results it was concluded that the laundry wastewater pretreated in the MBBR-UV/O3-MF-NF system could be recycled to any stage of the laundry process.


2021 ◽  
Author(s):  
Westphalen Dornelas Camara Heloisa

Membrane separation processes have been more widely applied to industrial activities, especially in water and wastewater treatment. However, there are still challenges associated to the use of membranes. Concentration polarization and fouling can cause significant permeate flux decay during the filtration process, hindering its efficiency and increasing cost. Among many strategies, the combination of membrane filtration with ultrasound (US) application has shown promising results in reducing membrane fouling. The main goal of this research was to identify the effect of US frequency, US power intensity and feed solution concentration on permeate flux during ultrafiltration of simulated latex paint effluent. Maximum increase in permeate flux of 19.7% was obtained by applying 20 kHz and 0.29 W.cm-2 to feed solution with 0.075 wt.% of solid concentration. The effect of feed flow rate was analyzed showing that an increase in feed flowrate is not beneficial to the fouling minimization process. Overall, the application of US improves permeate flux by reducing fouling of ultrafiltration polymeric membrane.


2021 ◽  
Author(s):  
Amirah Syakirah Zahirulain ◽  
Fauziah Marpani ◽  
Syazana Mohamad Pauzi ◽  
'Azzah Nazihah Che Abd Rahim ◽  
Hang Thi Thuy Cao ◽  
...  

Abstract Integration of membrane filtration and biocatalysis has appealing benefits in terms of simultaneous substrate conversion and product separation in one reactor. Nevertheless, the interaction between enzymes and membrane is complex and the mechanism of enzyme docking on membrane is similar to membrane fouling. In this study, focus is given on the assessment of enzyme immobilization mechanism on reverse asymmetric polymer membrane based on the permeate flux data during the procedure. Evaluation of membrane performance in terms of its permeability, fouling mechanisms, enzyme loading, enzyme reusability and biocatalytic productivity were also conducted. Alcohol Dehydrogenase (EC 1.1.1.1), able to catalyze formaldehyde to methanol with subsequent oxidation of NADH to NAD was selected as the model enzyme. Two commercial, asymmetric, flat sheet polymer membranes (PES and PVDF) were immobilized with the enzyme in the reverse mode. Combination of concentration polarization phenomenon and pressure driven filtration successfully immobilized almost 100% of the enzymes in the feed solutions. The biocatalytic membrane reactor recorded more than 90% conversion, stable permeate flux with no enzyme leaching even after 5 cycles. The technique showing promising results to be expanded to continuous membrane separation setup for repeated use of enzymes.


2021 ◽  
Author(s):  
Westphalen Dornelas Camara Heloisa

Membrane separation processes have been more widely applied to industrial activities, especially in water and wastewater treatment. However, there are still challenges associated to the use of membranes. Concentration polarization and fouling can cause significant permeate flux decay during the filtration process, hindering its efficiency and increasing cost. Among many strategies, the combination of membrane filtration with ultrasound (US) application has shown promising results in reducing membrane fouling. The main goal of this research was to identify the effect of US frequency, US power intensity and feed solution concentration on permeate flux during ultrafiltration of simulated latex paint effluent. Maximum increase in permeate flux of 19.7% was obtained by applying 20 kHz and 0.29 W.cm-2 to feed solution with 0.075 wt.% of solid concentration. The effect of feed flow rate was analyzed showing that an increase in feed flowrate is not beneficial to the fouling minimization process. Overall, the application of US improves permeate flux by reducing fouling of ultrafiltration polymeric membrane.


Desalination ◽  
2004 ◽  
Vol 162 ◽  
pp. 117-120 ◽  
Author(s):  
Ildikó Galambos ◽  
Jesus Mora Molina ◽  
Péter Járay ◽  
Gyula Vatai ◽  
Erika Bekássy-Molnár

2017 ◽  
Vol 45 (2) ◽  
pp. 23-27 ◽  
Author(s):  
Mihály Zakar ◽  
Ildikó Kovács ◽  
Péter Muhi ◽  
Erika Hanczné Lakatos ◽  
Gábor Keszthelyi-Szabó ◽  
...  

Abstract The dairy industry generates wastewater characterised by high levels of biological and chemical oxygen demands representative of their high degree of organic content; mainly carbohydrates, proteins and fats that originate from milk. Several investigations have been conducted into the reuse of dairy wastewater, e.g. membrane processes are a promising method to treat such wastewater. Earlier works have proven that with membrane filtration an appropriate degree of retention can be achieved and the permeate can be reused. However, membrane fouling is a limiting factor in these processes. Advanced oxidation processes (AOPs) are widely used in the fields of water and wastewater treatments and are known for their capability to mineralise a wide range of organic compounds. AOPs also exhibit some other effects on the filtration process, e.g. the microflocculation effect of ozone may play a significant role in increasing the elimination efficiency and causing a decreased level of irreversible fouling. By comparing ozone and Fenton pre-treatment (FPT) processes it can be shown that the fouling propensity of pre-treated pollutants does not depend on the pre-treatment method, while FPT was proven to be more efficient in improving the level of flux.


Author(s):  
Leticia Tamara Hoffmann ◽  
Matheus Caneles Batista Jorge ◽  
Adriana Garcia do Amaral ◽  
Milene Carvalho Bongiovani ◽  
Roselene Maria Schneider

Ozone is an oxidizing agent with a potential for removing complex molecules, including those of difficult microbiological decomposition, such as the molecules found in landfill leachates. This effluent presents high organic content, including recalcitrant molecules. Therefore, this study evaluated the efficiency of ozonation in the treatment of raw leachate at the Primavera landfill, located in Mato Grosso, Brazil. The experiments were carried out using the batch system. The leachate pH value was set at 7 and 10, and the contact times between the gas and the leachate were 20, 40, 60, 80, and 100 minutes. Throughout the study, we analyzed color, turbidity, pH value, chemical oxygen demand (COD), and ultraviolet absorbance at 254 nm (UV abs) of the leachate, both before and after ozonation. Results show that ozonation presented high removal of color, COD and UV abs when pH was 7. In contrast, turbidity removal was higher when the pH value was 10. Regarding contact time, we observed a high removal of color (between 80% and 90%) and UV abs (between 60% and 70%) at 40 minutes, depending on the pH value. Removal was also high for turbidity (approximately 75%) starting at 20 minutes with the pH value at 10, and at 70 minutes with pH at 7. The removal relation within all analyzed parameters (due to ozone consumption) decreased throughout the reaction time. Thus, we concluded that ozonation as a pre-treatment of leachate is indeed satisfactory because of its great capacity for organic material removal.


Sign in / Sign up

Export Citation Format

Share Document