scholarly journals 3D/2D Bilayerd Perovskite Solar Cells with an Enhanced Stability and Performance

Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3868
Author(s):  
Hyeon-Seo Choi ◽  
Hui-Seon Kim

The formation of a thin 2D perovskite layer on the surface of 3D perovskite films has become a popular strategy for obtaining a high-efficiency perovskite solar cell (PSC) with an ensured device stability. In this review paper, various experimental methods used for growth of the 2D layer are introduced with the resulting film properties. Furthermore, a variety of organic cation sources for the 2D layer, ranging from alkyl to phenyl ammonium, are explored to investigate their impact on the device stability and photovoltaic performance.

2021 ◽  
Vol 10 (2) ◽  
pp. 41-47
Author(s):  
Ilham Yurestira ◽  
Arie Purnomo Aji ◽  
Muhammad Feri Desfri ◽  
Ari Sulistyo Rini ◽  
Yolanda Rati

Abstrak. Sel surya berbasis perovskite merupakan sel fotovoltaik generasi terakhir yang mampu memanfaatkan energi surya dengan efisiensi tinggi dan dapat difabrikasi melalui proses yang sederhana dan murah. Sejak diperkenalkannya perovskite solar cell (PSC), efisiensi konversi dayanya telah mencapai efisiensi di atas 23% dalam waktu yang relatif singkat diiringi dengan peningkatan publikasi ilmiah di bidang ini. Penggunaan semikonduktor ZnO sebagai Electron Transport Material (ETM) yang merupakan salah satu bagian utama dalam PSC mulai dilirik akibat proses pembuatan yang lebih sederhana dibandingkan TiO2. Seng oksida (ZnO) masih memiliki kelemahan yang dapat diatasi dengan penambahan ZnS untuk mengurangi rekombinasi pembawa muatan dari lapisan perovskite ke ETM. Tujuan dari artikel ini adalah untuk menyajikan tinjauan singkat tentang status terkini mengenai komposit ZnO/ZnS sebagai elektron transport material pada sel surya perovskit. Ulasan ini juga membahas peran penambahan ZnS dalam memperbaiki morfologi dalam ukuran nano dan sifat optik material sekaligus meningkatkan kinerja PSC beserta penjelasan mengenai mekanisme dasar operasi piranti untuk memberikan pemahaman yang lebih baik tentang sifat dari ZnO/ZnS sebagai ETM pada sel surya perovskit. Abstract. Perovskite-based solar cells are the latest generation of photovoltaic cells capable of utilizing solar energy at high efficiency and can be fabricated through a simple and inexpensive process. Since the introduction of the perovskite solar cell (PSC), its power conversion efficiency has reached efficiencies above 23% in a relatively short period of time accompanied by an increase in scientific publications in this field. The use of ZnO semiconductors as Electron Transport Material (ETM), which is one of the main parts of PSC, has begun to be noticed due to the simpler manufacturing process compared to TiO2. Zinc oxide (ZnO) still has a weakness which can be overcome by adding ZnS to reduce the recombination of the charge carriers from the perovskite layer to the ETM. The aim of this article is to present a brief overview of the current status of ZnO/ZnS composites as an electron transport material in perovskite solar cells. This review also discusses the role of addition of ZnS in improving morphology in nanosize and optical properties of materials as well as improving PSC performance along with an explanation of the basic mechanism of device operation to provide a better understanding of the properties of ZnO/ZnS as ETM in perovskite solar cells. Keywords: Perovskite solar cell, Composite, ZnO, ZnS dan Electron Transport Material.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qingshun Dong ◽  
Chao Zhu ◽  
Min Chen ◽  
Chen Jiang ◽  
Jingya Guo ◽  
...  

AbstractThe perovskite solar cell has emerged rapidly in the field of photovoltaics as it combines the merits of low cost, high efficiency, and excellent mechanical flexibility for versatile applications. However, there are significant concerns regarding its operational stability and mechanical robustness. Most of the previously reported approaches to address these concerns entail separate engineering of perovskite and charge-transporting layers. Herein we present a holistic design of perovskite and charge-transporting layers by synthesizing an interpenetrating perovskite/electron-transporting-layer interface. This interface is reaction-formed between a tin dioxide layer containing excess organic halide and a perovskite layer containing excess lead halide. Perovskite solar cells with such interfaces deliver efficiencies up to 22.2% and 20.1% for rigid and flexible versions, respectively. Long-term (1000 h) operational stability is demonstrated and the flexible devices show high endurance against mechanical-bending (2500 cycles) fatigue. Mechanistic insights into the relationship between the interpenetrating interface structure and performance enhancement are provided based on comprehensive, advanced, microscopic characterizations. This study highlights interface integrity as an important factor for designing efficient, operationally-stable, and mechanically-robust solar cells.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alexander D. Taylor ◽  
Qing Sun ◽  
Katelyn P. Goetz ◽  
Qingzhi An ◽  
Tim Schramm ◽  
...  

AbstractDeposition of perovskite films by antisolvent engineering is a highly common method employed in perovskite photovoltaics research. Herein, we report on a general method that allows for the fabrication of highly efficient perovskite solar cells by any antisolvent via manipulation of the antisolvent application rate. Through detailed structural, compositional, and microstructural characterization of perovskite layers fabricated by 14 different antisolvents, we identify two key factors that influence the quality of the perovskite layer: the solubility of the organic precursors in the antisolvent and its miscibility with the host solvent(s) of the perovskite precursor solution, which combine to produce rate-dependent behavior during the antisolvent application step. Leveraging this, we produce devices with power conversion efficiencies (PCEs) that exceed 21% using a wide range of antisolvents. Moreover, we demonstrate that employing the optimal antisolvent application procedure allows for highly efficient solar cells to be fabricated from a broad range of precursor stoichiometries.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 591
Author(s):  
Keke Song ◽  
Xiaoping Zou ◽  
Huiyin Zhang ◽  
Chunqian Zhang ◽  
Jin Cheng ◽  
...  

The electron transport layer (ETL) is critical to carrier extraction for perovskite solar cells (PSCs). Moreover, the morphology and surface condition of the ETL could influence the topography of the perovskite layer. ZnO, TiO2, and SnO2 were widely investigated as ETL materials. However, TiO2 requires a sintering process under high temperature and ZnO has the trouble of chemical instability. SnO2 possesses the advantages of low-temperature fabrication and high conductivity, which is critical to the performance of PSCs prepared under low temperature. Here, we optimized the morphology and property of SnO2 by modulating the concentration of a SnO2 colloidal dispersion solution. When adjusting the concentration of SnO2 colloidal dispersion solution to 5 wt.% (in water), SnO2 film indicated better performance and the perovskite film has a large grain size and smooth surface. Based on high efficiency (16.82%), the device keeps a low hysteresis index (0.23).


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Zicheng Li ◽  
Yifeng Gao ◽  
Zhihao Zhang ◽  
Qiu Xiong ◽  
Longhui Deng ◽  
...  

AbstractEfficient electron transport layers (ETLs) not only play a crucial role in promoting carrier separation and electron extraction in perovskite solar cells (PSCs) but also significantly affect the process of nucleation and growth of the perovskite layer. Herein, crystalline polymeric carbon nitrides (cPCN) are introduced to regulate the electronic properties of SnO2 nanocrystals, resulting in cPCN-composited SnO2 (SnO2-cPCN) ETLs with enhanced charge transport and perovskite layers with decreased grain boundaries. Firstly, SnO2-cPCN ETLs show three times higher electron mobility than pristine SnO2 while offering better energy level alignment with the perovskite layer. The SnO2-cPCN ETLs with decreased wettability endow the perovskite films with higher crystallinity by retarding the crystallization rate. In the end, the power conversion efficiency (PCE) of planar PSCs can be boosted to 23.17% with negligible hysteresis and a steady-state efficiency output of 21.98%, which is one of the highest PCEs for PSCs with modified SnO2 ETLs. SnO2-cPCN based devices also showed higher stability than pristine SnO2, maintaining 88% of the initial PCE after 2000 h of storage in the ambient environment (with controlled RH of 30% ± 5%) without encapsulation.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 978
Author(s):  
Chaoqun Lu ◽  
Weijia Zhang ◽  
Zhaoyi Jiang ◽  
Yulong Zhang ◽  
Cong Ni

The hole transport layer (HTL) is one of the main factors affecting the efficiency and stability of perovskite solar cells (PSCs). However, obtaining HTLs with the desired properties through current preparation techniques remains a challenge. In the present study, we propose a new method which can be used to achieve a double-layer HTL, by inserting a CuI layer between the perovskite layer and Spiro-OMeTAD layer via a solution spin coating process. The CuI layer deposited on the surface of the perovskite film directly covers the rough perovskite surface, covering the surface defects of the perovskite, while a layer of CuI film avoids the defects caused by Spiro-OMetad pinholes. The double-layer HTLs improve roughness and reduce charge recombination of the Spiro-OMeTAD layer, thereby resulting in superior hole extraction capabilities and faster hole mobility. The CuI/Spiro-OMeTAD double-layer HTLs-based devices were prepared in N2 gloveboxes and obtained an optimized PCE (photoelectric conversion efficiency) of 17.44%. Furthermore, their stability was improved due to the barrier effect of the inorganic CuI layer on the entry of air and moisture into the perovskite layer. The results demonstrate that another deposited CuI film is a promising method for realizing high-performance and air-stable PSCs.


2021 ◽  
Vol 34 (1) ◽  
pp. 01-08
Author(s):  
B GopalKrishna ◽  
Sanjay Tiwari

Perovskite solar cells are emerging photovoltaic devices with PCE of above 25%. Perovskite are suitable light absorber materials in solar cells with excellent properties like appropriate band gap energy, long carrier lifetime and diffusion length, and high extinction coefficient. Simulation study is an important technique to understand working mechanisms of perovskites solar cells. The study would help develop efficient, stable PSCs experimentally. In this study, modeling of perovskite solar cell was carried out through Setfos software. The optimization of different parameters of layer structure of solar cell would help to achieve maximum light absorption in the perovskite layer of solar cell. Simulation study is based drift-diffusion model to study the different parameters of perovskite solar cell. Hysteresis is one of the factors in the perovskite solar cell which may influence the device performance. The measurement of abnormal hysteresis can be done by current-voltage curve during backward scan during simulation study. In backward scan, the measurement starts from biasing voltage higher than open circuit voltage and sweep to voltage below zero. The numerical simulation used to study the various parameters like open circuit voltage, short circuit current, fill factor, power conversion efficiency and hysteresis. The simulation results would help to understand the photophysics of solar cell physics which would help to fabricate highly efficient and stable perovskite solar cells experimentally.


2017 ◽  
Vol 5 (24) ◽  
pp. 12416-12425 ◽  
Author(s):  
Yan-Zhen Zheng ◽  
Er-Fei Zhao ◽  
Fan-Li Meng ◽  
Xue-Sen Lai ◽  
Xue-Mei Dong ◽  
...  

A compact and even ZnO:I nanopillar planar electron transport layer (ETL) is prepared to enable deposition of a fully covering and highly uniform perovskite layer by a facile one-step spin-coating process method. Such a ZnO:I nanopillar ETL film exhibits high optical transparency, favorable work function and superior electron extraction ability, leading to the opt-electrical conversion efficiency as high as 18.24%.


2019 ◽  
Vol 7 (29) ◽  
pp. 17324-17333 ◽  
Author(s):  
Meiyue Liu ◽  
Ziming Chen ◽  
Yongchao Yang ◽  
Hin-Lap Yip ◽  
Yong Cao

Ag diffused across the PCBM layer increased the trap density and down-shifted the energy level of the perovskite layer. Fortunately, PCBM/ZnO layer efficiently suppressed the Ag diffusion, resulting in a perovskite solar cell with PCE of 18.1%.


2020 ◽  
Vol 56 (4) ◽  
pp. 535-538 ◽  
Author(s):  
Jungwon Kim ◽  
Gyeongseop Lee ◽  
Kisu Lee ◽  
Haejun Yu ◽  
Jong Woo Lee ◽  
...  

We first manufactured an F plasma-treated carbon electrode-based high performance perovskite solar cell with strong moisture resistance.


Sign in / Sign up

Export Citation Format

Share Document