scholarly journals Lattice Strain Evolutions in Ni-W Alloys during a Tensile Test Combined with Synchrotron X-ray Diffraction

Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4027
Author(s):  
Tarik Sadat ◽  
Damien Faurie ◽  
Dominique Thiaudière ◽  
Cristian Mocuta ◽  
David Tingaud ◽  
...  

Ni and Ni(W) solid solution of bulk Ni and Ni-W alloys (Ni-10W, Ni-30W, and Ni-50W) (wt%) were mechanically compared through the evolution of their {111} X-ray diffraction peaks during in situ tensile tests on the DiffAbs beamline at the Synchrotron SOLEIL. A significant difference in terms of strain heterogeneities and lattice strain evolution occurred as the plastic activity increased. Such differences are attributed to the number of brittle W clusters and the hardening due to the solid solution compared to the single-phase bulk Ni sample.

2019 ◽  
Vol 792 ◽  
pp. 536-542
Author(s):  
Larissa da Silva Marques ◽  
Joelma Maria de Oliveira Ferreira ◽  
Querem Hapuque Félix Rebelo ◽  
Angsula Ghosh ◽  
Daniela Menegon Trichês ◽  
...  

1992 ◽  
Vol 7 (8) ◽  
pp. 2219-2224 ◽  
Author(s):  
N.E. Pingitore ◽  
B.F. Ponce ◽  
M.P. Eastman ◽  
F. Moreno ◽  
C. Podpora

Optical, electron microprobe, and x-ray diffraction analysis of 88 samples of various compositions between Ag2S and Ag2Se synthesized at high temperature in sealed quartz tubing indicates the presence of two solid-solution series in this system at ambient (room) conditions. One series extends from Ag2S to approximately Ag2S0.4Se0.7 and has the Ag2S-III-type structure (monoclinic). The second series ranges from Ag2S0.3Se0.7 to Ag2Se and is characterized by the Ag2Se-II-type structure (orthorhombic). Members of both series, in appropriate proportions, characterize the apparent compositional gap between the two solid solutions. Gradual shifts in the locations of the x-ray diffraction peaks along the compositional gradient of each solid solution revealed an expansion of the d-spacing as the larger Se ion was substituted for S in the Ag2S-III-type structure and a contraction as S was substituted for Se in the Ag2Se-II-type structure. The reported discrete phase, Ag4SSe (aguilarite, orthorhombic), appears to be simply a member of the monoclinic Ag2S-III-type solid solution.


1993 ◽  
Vol 37 ◽  
pp. 479-482 ◽  
Author(s):  
Joe Wong ◽  
J. W. Elmer ◽  
P. A. Waide ◽  
E. M. Larson

The synchrotron x-ray source provides a unique opportunity to observe many “in-situ” processes. The formation of the “short-lived” intermediate species, Ta2C, during the combustion synthesis of TaC, has been observed and reported by monitoring the Bragg diffraction peaks of the reactants and products, Similarly, the synthesis of the ferroelectric material, BaTiO3, and subsequent phase transfonnation from cubic to tetragonal have also been investigated. These experiments would not have been possible without the high incident x-ray flux available at a synchrotron source.


1980 ◽  
Vol 24 ◽  
pp. 221-230 ◽  
Author(s):  
R. B. Roof

Two metal foils, one pure plutonium and the other being a solid solution of 6.5 a/o gallium In plutonium, were examined, in-situ, by X-ray diffraction techniques while under pressure. The purpose was to determine the compression and compressibility of these materials as a function of pressure and to identify the products of any transformation that may occur due to the action of applied pressures.


2007 ◽  
Vol 21 (25) ◽  
pp. 1697-1714
Author(s):  
S. RAM ◽  
A. JANA ◽  
T. K. KUNDU

The phase formation and thermal-induced phase transformation are studied in BaTiO 3 nanoparticles. 2 h of heating a polymer precursor at 550°C in air formed a single phase BaTiO 3 of 15 nm average crystallite size D. The X-ray diffraction peaks are analyzed assuming a P nma orthorhombic (o) crystal structure of lattice parameters a = 0.6435 nm , b = 0.5306 nm , and c = 0.8854 nm . The lattice volume V = 0.3023 nm 3, with z = 4 formula units, yields a density ρ = 5.124 g/cm 3. This is a new polymorph in comparison to well-known P m3m tetragonal (t) structure, V = 0.0644 nm 3 or ρ = 6.016 g/cm 3 (z = 1). An o ↦ t transformation appears on heating at temperature as high as 650°C in air. A proposed model explains the transformation above a certain D value in terms of the Gibbs free energy. Unless heating above 750°C, the two phases coexist in a composite structure (D≤27 nm ), with as much residual o-phase trace as ~28 vol%. As a function of temperature both the phases decrease in the V values up to 0.2975 and 0.0643 nm3 at 750°C respectively (0.0650 nm3 at 650°C). This is an important parameter for designing useful ferroelectric and other properties in a hybrid composite structure.


1998 ◽  
Vol 546 ◽  
Author(s):  
M. Hommel ◽  
O. Kraft ◽  
S. P. Baker ◽  
E. Arzt

AbstractA special micro-tensile tester was used to carry out tensile tests of thin copper films on substrates. The elastic strain in the film was measured in-situ using x-ray diffraction and the total strain with an external strain gage. From the elastic strains the stresses in the films were calculated and stress-strain curves were obtained. It was observed that the flow stress increases with decreasing film thickness. The method was also applied to investigate the mechanical behavior of films under cyclic loading.


2013 ◽  
Vol 747-748 ◽  
pp. 613-618
Author(s):  
Qiao Zhang ◽  
Shu Hua Liang ◽  
Chen Zhang ◽  
Jun Tao Zou

The as-cast Ni-W alloys with 15wt%W, 25wt%W and 30wt%W were annealed in hydrogen at 1100. The effect of the annealing time on the microstructure of Ni-W alloys was studied, and the phase constituents and microstructure of annealed Ni-W alloys were characterized by the X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that no any phase changed for Ni-15%W, Ni-25%W and Ni-30%W alloys annealed for 60 min, 90 min and 150 min, which were still consisted of single-phase Ni (W) solid solution. However, microstructure had a significant change after annealing. With increase of annealing time, the microstructure of Ni-15%W alloy became more uniform after annealing for 90 min, and the average grain size was 95μm, whereas the grain size of Ni-15%W alloy increased significantly after annealing for 150 min. For Ni-25%W and Ni-30%W, there was no obvious change on the grain size with increase of annealing time, and the amount of oxides at grain boundaries gradually reduced. After annealing for 150 min, the impurities at grain boundaries almost disappeared. Subsequently, the annealing at 1100 for 150 min was beneficial for the desired microstructure of Ni-25%W and Ni-30%W alloys.


2015 ◽  
Vol 230 ◽  
pp. 39-44 ◽  
Author(s):  
Natalja Ohon ◽  
Leonid Vasylechko ◽  
Yurii Prots ◽  
Marcus Schmidt ◽  
I.I. Syvorotka

Phase and structural behaviour in the SmAlO3–TbAlO3system has been studied in a whole concentration range by means of laboratory X-ray diffraction,in situhigh temperature synchrotron powder diffraction and differential thermal analysis. Formation of the continuous solid solution Sm1−xTbxAlO3with the orthorhombic perovskite structure (space groupPbnm) has been established. Peculiarity of the investigated system is lattice parameter crossovers resulted in the existence of three regions with different relations of the lattice parameters. Based on the results obtained, as well as an available literature data for the “pure” SmAlO3and TbAlO3, a phase diagram of the pseudo-binary SmAlO3–TbAlO3system has been constructed.


Sign in / Sign up

Export Citation Format

Share Document