scholarly journals Hot Workability of Ultra-Supercritical Rotor Steel Using a 3-D Processing Map Based on the Dynamic Material Model

Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4118
Author(s):  
Xuewen Chen ◽  
Yuqing Du ◽  
Tingting Lian ◽  
Kexue Du ◽  
Tao Huang

As a new-type of ultra-supercritical HI-IP rotor steel, X12CrMoWVNbN10-1-1 alloy steel has excellent integrative performance, which can effectively improve the power generation efficiency of the generator set. In this paper, uniaxial thermal compression tests were carried out over a temperature range of 950–1200 °C and strain rates of 0.05–5 s−1 with a Gleeble-1500D thermal simulation testing machine. Moreover, based on hot compression experimental data and the theory of processing diagrams, in combination with the dynamic material model, a three-dimensional (3-D) thermal processing map considering the effect of strain was constructed. It was concluded that optimum thermal deformation conditions were as follows: the temperature range of 1150–1200 °C, the strain rate range of 0.05–0.634 s−1. Through secondary development of the finite element (FE) software FORGE®, three-dimensional thermal processing map data were integrated into finite element software FORGE®. The distributions of instability coefficient and power dissipation coefficient were obtained over various strain rates and temperatures of the Ø 8 × 12 mm cylinder specimen by using finite element simulation. It is shown that simulation results are consistent with the microstructure photos. The method proposed in this paper, which integrates the three-dimensional processing map into the finite element software FORGE® (Forge NxT 2.1, Transvalor, Nice, France), can effectively predict the formability of X12CrMoWVNbN10-1-1 alloy steel.

2013 ◽  
Vol 762 ◽  
pp. 382-386
Author(s):  
Lu Jun Huang ◽  
Yu Zi Zhang ◽  
Lin Geng

The hot compression behavior of in situ TiB whiskers reinforced Ti6Al4V (TiBw/Ti6Al4V) composites with a novel network microstructure is investigated in the temperature range of 900-1100°C and strain rate range of 0.001-10 s-1. The results show that all the stress-strain curves of the composites display peak flow, softening and steady-state. Moreover, the peak flow stress decreases with increasing temperatures and decreasing strain rates. Processing map of the composite is constructed using the dynamic material model (DMM). Dynamic recrystallization (DRX) of α phase is observed in the deformation region corresponding with peak efficiency of the processing map. However, the flow instability region ranged from 900 to 1100°C at strain rates higher than 1.0 s-1should be avoided.


2009 ◽  
Vol 610-613 ◽  
pp. 815-821 ◽  
Author(s):  
Xin Zhao ◽  
Kui Zhang ◽  
Xing Gang Li ◽  
Yong Jun Li ◽  
Kang Zhang ◽  
...  

The characteristic of dynamic recrystallization (DRX) in Mg-Y-Nd-Gd-Zr magnesium alloy had been investigated by compression test at temperatures between 523 and 723K and the strain rates ranging from 0.002 to 1s-1with maximum strain of 0.693. The flow behavior was described by a power exponent function. Processing map of this alloy was established on the basis of dynamic material model. Microstructure observations suggested that the peak value of dissipation factor was 0.36 at the temperature of 673K and the strain rate of 1s-1. The map exhibits flow instabilities as two domains, one is at the lower temperatures but higher strain rates, and the other is at higher temperatures and lower strains.The region at an intermediate temperature and a high strain rate is the region of the optimal mechanical working properties.


2013 ◽  
Vol 577-578 ◽  
pp. 385-388 ◽  
Author(s):  
Dobromil Pryl ◽  
Jitka Mikolášková ◽  
Radomír Pukl

Numerical model for fatigue crack propagation within the framework of finite element smeared crack analysis is presented. It concentrates on modeling of fatigue behavior of material under tensile load which causes initiation and growth of cracks in concrete. The fatigue material model is an extension of existing static three-dimensional fracture-plastic material model, and as such it has been implemented into the ATENA Finite Element software package. The developed model has been used to model experiments with high-cycle loading of three point bending concrete specimens tested by collaborating institutions. Analysis results are compared to the measurements.


Author(s):  
Sheng Yu-ming ◽  
Li Chao ◽  
Xia Ming-yao ◽  
Zou Jin-feng

Abstract In this study, elastoplastic model for the surrounding rock of axisymmetric circular tunnel is investigated under three-dimensional (3D) principal stress states. Novel numerical solutions for strain-softening surrounding rock were first proposed based on the modified 3D Hoek–Brown criterion and the associated flow rule. Under a 3D axisymmetric coordinate system, the distributions for stresses and displacement can be effectively determined on the basis of the redeveloped stress increment approach. The modified 3D Hoek–Brown strength criterion is also embedded into finite element software to characterize the yielding state of surrounding rock based on the modified yield surface and stress renewal algorithm. The Euler implicit constitutive integral algorithm and the consistent tangent stiffness matrix are reconstructed in terms of the 3D Hoek–Brown strength criterion. Therefore, the numerical solutions and finite element method (FEM) models for the deep buried tunnel under 3D principal stress condition are presented, so that the stability analysis of surrounding rock can be conducted in a direct and convenient way. The reliability of the proposed solutions was verified by comparison of the principal stresses obtained by the developed numerical approach and FEM model. From a practical point of view, the proposed approach can also be applied for the determination of ground response curve of the tunnel, which shows a satisfying accuracy compared with the measuring data.


2012 ◽  
Vol 487 ◽  
pp. 855-859
Author(s):  
Shi Lun Feng ◽  
Yu Ming Zhou ◽  
Pu Lin Li ◽  
Jun Li ◽  
Zhi Yong Li ◽  
...  

Abaqus finite element software can implement three-dimensional excavation design calculation, so authors used Python of Abaqus core language made the 3D design of foundation pit supporting program come ture and also did intensive study of mesh optimization during the process. Authors also did intensive comparison and analysis about grid division of the complex geometry foundation pit, through a regularization partion about a variety of special-shaped pit, we made the automatic division about the structural grid of all kinds of shapes foundation pit successful. On this basis, we achieved better calculation effects of the model. The article will introduce problems about optimization of grid in procedure.


2012 ◽  
Vol 134 (3) ◽  
Author(s):  
Thomas Fellner ◽  
Elena Zukowski ◽  
Jürgen Wilde ◽  
H. Kück ◽  
H. Richter ◽  
...  

This investigation is aimed at the modeling of both the fabrication process and the reliability of press-fit interconnections on moulded interconnect devices (MID). These are multifunctional three-dimensional substrates, produced by thermoplastic injection moulding for large-series applications. The assembly process and subsequently the durability of press-fit interconnections has been modeled and proved with a finite element software. Especially, a simulation tool for process optimizations was created and applied. In order to obtain realistic results, a creep model for the investigated base material, a liquid-crystal polymer (LCP), was generated and verified by experiments. Required friction coefficients between metal pin and base material were determined by adapting simulations and experiments. Retention forces of pins pressed into substrate holes during as well after the assembly process, and after temperature loads were predicted by simulations. Additionally, the decreasing extraction forces over time due to creep in the thermoplastic base material have been predicted for different storage temperatures as well with finite element analyses. Following, the numerical results of the process and reliability modeling were verified by experiments. It is concluded that the behavior of the mechanical contact of the pin-substrate system, can be suitably described time- and temperature-dependent.


2014 ◽  
Vol 539 ◽  
pp. 731-735 ◽  
Author(s):  
Yu Chen

In this thesis, based on the design of a 140+90m span unusual single tower and single cable plane cable-stayed bridge, free vibration characteristics and seismic response are investigated; three dimensional finite element models of a single tower cable-stayed bridge with and without the pile-soil-structure interaction are established respectively by utilizing finite element software MIDAS/CIVIL, seismic response of Response spectrum and Earthquake schedule are analyzed respectively and compared. By the comparison of the data analysis, for small stiffness span cable-stayed bridge, the pile-soil-structure interaction can not be ignored with calculation and analysis of seismic response.


2018 ◽  
Vol 157 ◽  
pp. 02038
Author(s):  
Peter Pecháč ◽  
Milan Sága

This paper presents numerical simulation of blanking process for cold-rolled steel sheet metal. The problem was modeled using axial symmetry in commercial finite element software ADINA. Data obtained by experimental measurement were used to create multi-linear plastic material model for simulation. History of blanking force vs. tool displacement was obtained.


2011 ◽  
Vol 70 ◽  
pp. 315-320 ◽  
Author(s):  
Riaz Muhammad ◽  
Agostino Maurotto ◽  
Anish Roy ◽  
Vadim V. Silberschmidt

Analysis of the cutting process in machining of advanced alloys, which are typically difficult-to-machine materials, is a challenge that needs to be addressed. In a machining operation, cutting forces causes severe deformations in the proximity of the cutting edge, producing high stresses, strain, strain-rates and temperatures in the workpiece that ultimately affect the quality of the machined surface. In the present work, cutting forces generated in a vibro-impact and hot vibro-impact machining process of Ti-based alloy, using an in-house Ultrasonically Assisted Turning (UAT) setup, are studied. A three-dimensional, thermo-mechanically coupled, finite element model was developed to study the thermal and mechanical processes in the cutting zone for the various machining processes. Several advantages of ultrasonically assisted turning and hot ultrasonically assisted turning are demonstrated when compared to conventional turning.


Sign in / Sign up

Export Citation Format

Share Document