scholarly journals Basal Plane Bending of Homoepitaxial MPCVD Single-Crystal Diamond

Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4510
Author(s):  
Xiaotong Han ◽  
Peng Duan ◽  
Yan Peng ◽  
Xiwei Wang ◽  
Xuejian Xie ◽  
...  

We report herein high-resolution X-ray diffraction measurements of basal plane bending of homoepitaxial single-crystal diamond (SCD). We define SCD (100) as the base plane. The results revealed that growth parameters such as temperature, growth time, and basal plane bending of the substrate all affect the basal plane bending of SCD. First, the basal plane bending of SCD depends mainly on the substrate and becomes severe with increasing basal plane bending of the substrate. The SCD growth experiments show that the basal plane bending increases with elevated growth temperature and increased growth time. Finally, to understand the mechanism, we investigated the substrate-surface temperature distribution as a function of basal plane bending of SCD fabricated by chemical vapor deposition (CVD). This allowed us to propose a model and understand the origin of basal plane bending. The results indicate that an uneven temperature distribution on the substrate surface is the main cause of the base-plane bending of CVD diamond.

Author(s):  
Xiaotong Han ◽  
Peng Duan ◽  
Yan Peng ◽  
Xuejian Xie ◽  
Xiwei Wang ◽  
...  

We report herein high-resolution x-ray diffraction measurements of basal plane bending of homoepitaxial single-crystal diamond (SCD). The results reveal that growth parameters such as temperature, growth time and basal plane bending of the substrate affect the basal plane bending of SCD. First, the basal plane bending of SCD depends mainly on the substrate itself. The basal plane bending of SCD becomes more severe with increasing basal plane bending of the substrate and this type of basal plane bending cannot be recovered. The SCD growth experiments show that the basal plane bending increases at high temperature and with increasing growth time. Finally, to understand the mechanism behind basal plane bending, we investigate the substrate-surface temperature distribution as a function of basal plane bending of SCD fabricated by chemical vapour deposition (CVD). This allows us to propose a bending model and understand the origin of basal plane bending. The results indicate that an uneven temperature distribution on the substrate surface is the main cause of the CVD diamond base-plane bending.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3953 ◽  
Author(s):  
Wang ◽  
Duan ◽  
Cao ◽  
Liu ◽  
Wang ◽  
...  

: The high-quality single crystal diamond (SCD) grown in the Microwave Plasma Chemical Vapor Deposition (MPCVD) system was studied. The CVD deposition reaction occurred in a 300 torr high pressure environment on a (100) plane High Pressure High Temperature (HPHT) diamond type II a substrate. The relationships among the chamber pressure, substrate surface temperature, and system microwave power were investigated. The surface morphology evolution with a series of different concentrations of the gas mixture was observed. It was found that a single lateral crystal growth occurred on the substrate edge and a systemic step flow rotation from the [100] to the [110] orientation was exhibited on the surface. The Raman spectroscopy and High Resolution X-Ray Diffractometry (HRXRD) prove that the homoepitaxy part from the original HPHT substrate shows a higher quality than the lateral growth region. A crystal lattice visual structural analysis was applied to describe the step flow rotation that originated from the temperature driven concentration difference of the C2H2 ion charged particles on the SCD center and edge.


CrystEngComm ◽  
2022 ◽  
Author(s):  
Wei Cao ◽  
Zhibin Ma ◽  
Hongyang Zhao ◽  
Deng Gao ◽  
Qiuming Fu

On a semi-open holder, the homoepitaxial lateral growth of single-crystal diamond (SCD) was carried out via microwave plasma chemical vapor deposition (MPCVD). By tuning and optimizing two different structures of...


2015 ◽  
Vol 1734 ◽  
Author(s):  
Samuel L. Moore ◽  
Yogesh K. Vohra

ABSTRACTChemical Vapor Deposited (CVD) diamond growth on (111)-diamond surfaces has received increased attention lately because of the use of N-V related centers in quantum computing as well as application of these defect centers in sensing nano-Tesla strength magnetic fields. We have carried out a detailed study of homoepitaxial diamond deposition on (111)-single crystal diamond (SCD) surfaces using a 1.2 kW microwave plasma CVD (MPCVD) system employing methane/hydrogen/nitrogen/oxygen gas phase chemistry. We have utilized Type Ib (111)-oriented single crystal diamonds as seed crystals in our study. The homoepitaxially grown diamond films were analyzed by Raman spectroscopy, Photoluminescence Spectroscopy (PL), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The nitrogen concentration in the plasma was carefully varied between 0 and 1500 ppm while a ppm level of silicon impurity is present in the plasma from the quartz bell jar. The concentration of N-V defect centers with PL zero phonon lines (ZPL) at 575nm and 637nm and the Si-defect center with a ZPL at 737nm were experimentally detected from a variation in CVD growth conditions and were quantitatively studied. Altering nitrogen and oxygen concentration in the plasma was observed to directly affect N-V and Si-defect incorporation into the (111)-oriented diamond lattice and these findings are presented.


Sign in / Sign up

Export Citation Format

Share Document