scholarly journals Biogenic Composite Filaments Based on Polylactide and Diatomaceous Earth for 3D Printing

Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4632
Author(s):  
Marta Dobrosielska ◽  
Robert Przekop ◽  
Bogna Sztorch ◽  
Dariusz Brząkalski ◽  
Izabela Zgłobicka ◽  
...  

New composites containing a natural filler made of diatom shells (frustules), permitting the modification of polylactide matrix, were produced by Fused Deposition Modelling (3D printing) and were thoroughly examined. Two mesh fractions of the filler were used, one of <40 µm and the other of 40−63 µm, in order to check the effect of the filler particle size on the composite properties. The composites obtained contained diatom shells in the concentrations from 0% to 5% wt. (0−27.5% vol.) and were subjected to rheological analysis. The composites obtained as filaments of 1.75 mm in diameter were used for 3D printing. The printed samples were characterized as to hydrophilic–hydrophobic, thermal and mechanical properties. The functional parameters of the printed objects, e.g., mechanical characteristics, stability on contact with water and water contact angle, were measured. The results revealed differences in the processing behavior of the samples as well as the effect of secondary granulation of the filler on the parameters of the printing and mechanical properties of the composites.

MRS Advances ◽  
2020 ◽  
Vol 5 (33-34) ◽  
pp. 1775-1781 ◽  
Author(s):  
Levi C. Felix ◽  
Vladimir Gaál ◽  
Cristiano F. Woellner ◽  
Varlei Rodrigues ◽  
Douglas S. Galvao

ABSTRACTTriply Periodic Minimal Surfaces (TPMS) possess locally minimized surface area under the constraint of periodic boundary conditions. Different families of surfaces were obtained with different topologies satisfying such conditions. Examples of such families include Primitive (P), Gyroid (G) and Diamond (D) surfaces. From a purely mathematical subject, TPMS have been recently found in materials science as optimal geometries for structural applications. Proposed by Mackay and Terrones in 1991, schwarzites are 3D crystalline porous carbon nanocrystals exhibiting a TPMS-like surface topology. Although their complex topology poses serious limitations on their synthesis with conventional nanoscale fabrication methods, such as Chemical Vapour Deposition (CVD), schwarzites can be fabricated by Additive Manufacturing (AM) techniques, such as 3D Printing. In this work, we used an optimized atomic model of a schwarzite structure from the D family (D8bal) to generate a surface mesh that was subsequently used for 3D-printing through Fused Deposition Modelling (FDM). This D schwarzite was 3D-printed with thermoplastic PolyLactic Acid (PLA) polymer filaments. Mechanical properties under uniaxial compression were investigated for both the atomic model and the 3D-printed one. Fully atomistic Molecular Dynamics (MD) simulations were also carried out to investigate the uniaxial compression behavior of the D8bal atomic model. Mechanical testings were performed on the 3D-printed schwarzite where the deformation mechanisms were found to be similar to those observed in MD simulations. These results are suggestive of a scale-independent mechanical behavior that is dominated by structural topology.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 672 ◽  
Author(s):  
Elena Verdejo de Toro ◽  
Juana Coello Sobrino ◽  
Alberto Martínez Martínez ◽  
Valentín Miguel Eguía ◽  
Jorge Ayllón Pérez

New technologies are offering progressively more effective alternatives to traditional ones. Additive Manufacturing (AM) is gaining importance in fields related to design, manufacturing, engineering and medicine, especially in applications which require complex geometries. Fused Deposition Modelling (FDM) is framed within AM as a technology in which, due to their layer-by-layer deposition, thermoplastic polymers are used for manufacturing parts with a high degree of accuracy and minimum material waste during the process. The traditional technology corresponding to FDM is Polymer Injection Moulding, in which polymeric pellets are injected by pressure into a mould using the required geometry. The increasing use of PA6 in Additive Manufacturing makes it necessary to study the possibility of replacing certain parts manufactured by injection moulding with those created using FDM. In this work, PA6 was selected due to its higher mechanical properties in comparison with PA12. Moreover, its higher melting point has been a limitation for 3D printing technology, and a further study of composites made of PA6 using 3D printing processes is needed. Nevertheless, analysis of the mechanical response of standardised samples and the influence of the manufacturing process on the polyamide’s mechanical properties needs to be carried out. In this work, a comparative study between the two processes was conducted, and conclusions were drawn from an engineering perspective.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2456
Author(s):  
Demei Lee ◽  
Guan-Yu Wu

Three-dimensional (3D) printing is a manufacturing technology which creates three-dimensional objects layer-by-layer or drop-by-drop with minimal material waste. Despite the fact that 3D printing is a versatile and adaptable process and has advantages in establishing complex and net-shaped structures over conventional manufacturing methods, the challenge remains in identifying the optimal parameters for the 3D printing process. This study investigated the influence of processing parameters on the mechanical properties of Fused Deposition Modelling (FDM)-printed carbon fiber-filled polylactide (CFR-PLA) composites by employing an orthogonal array model. After printing, the tensile and impact strengths of the printed composites were measured, and the effects of different parameters on these strengths were examined. The experimental results indicate that 3D-printed CFR-PLA showed a rougher surface morphology than virgin PLA. For the variables selected in this analysis, bed temperature was identified as the most influential parameter on the tensile strength of CFR-PLA-printed parts, while bed temperature and print orientation were the key parameters affecting the impact strengths of printed composites. The 45° orientation printed parts also showed superior mechanical strengths than the 90° printed parts.


2021 ◽  
Vol 1046 ◽  
pp. 125-132
Author(s):  
Paul Eric C. Maglalang ◽  
Blessie A. Basilia ◽  
Araceli Magsino Monsada

It is quite amazing that the use of 3D printing techniques, especially the Fused Deposition Modelling (FDM) has delivered such significance in terms of cost reduction, time saver features where a different variety of thermoplastic and composite materials (Biodegradable and Non-biodegradable) are well developed. Different sectors have continually developed natural organic materials that are also both structurally composite in nature. Similarly, the use of different fibers that are abundantly accessible and considered as renewable resources which can be optionally combined with other biodegradable materials is a great challenge through the use of the FDM printing method. The study aims to determine the effect of different particle size and raster angle at a certain fiber concentration which could affect the mechanical properties of the composite by developing a printable composite filament made of Polylactic Acid (PLA) and Coco Coir materials using a filament maker and FDM printer. The composite filament was fabricated and optimized using a twin-screw extruder and 3D Devo Filament maker. 3D printing of samples for mechanical testing was conducted using three (3) raster angles (45o, 60o, and 75o) and various particle sizes of coco coir fiber reinforcement in the PLA matrix. Results showed that the < 74μm particle size of the coco-coir exhibited a 24% and 175% increase in tensile strength and izod impact strength compared to the pure PLA at 60o and 75o raster angles, respectively. Likewise, the reinforcement of <149μm particle size coco coir at 45o raster angle contributes to an increase of 4.8% flexural and 176% compressive strength compared to pure PLA. The study concludes that there is an improvement in the mechanical properties of the PLA-Coco Coir composite at a certain particle size and raster angle in 3D printing.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2567
Author(s):  
Madison Bardot ◽  
Michael D. Schulz

3D printing by fused deposition modelling (FDM) enables rapid prototyping and fabrication of parts with complex geometries. Unfortunately, most materials suitable for FDM 3D printing are non-degradable, petroleum-based polymers. The current ecological crisis caused by plastic waste has produced great interest in biodegradable materials for many applications, including 3D printing. Poly(lactic acid) (PLA), in particular, has been extensively investigated for FDM applications. However, most biodegradable polymers, including PLA, have insufficient mechanical properties for many applications. One approach to overcoming this challenge is to introduce additives that enhance the mechanical properties of PLA while maintaining FDM 3D printability. This review focuses on PLA-based nanocomposites with cellulose, metal-based nanoparticles, continuous fibers, carbon-based nanoparticles, or other additives. These additives impact both the physical properties and printability of the resulting nanocomposites. We also detail the optimal conditions for using these materials in FDM 3D printing. These approaches demonstrate the promise of developing nanocomposites that are both biodegradable and mechanically robust.


2021 ◽  
Vol 1208 (1) ◽  
pp. 012019
Author(s):  
Adi Pandzic ◽  
Damir Hodzic

Abstract One of the advantages provided by fused deposition modelling (FDM) 3D printing technology is the manufacturing of product materials with infill structure, which provides advantages such as reduced production time, product weight and even the final price. In this paper, the tensile mechanical properties, tensile strength and elastic modulus, of PLA, Tough PLA and PC FDM 3D printed materials with the infill structure were analysed and compared. Also, the influence of infill pattern on tensile properties was analysed. Material testing were performed according to ISO 527-2 standard. All results are statistically analysed and results showed that infill pattern have influence on tensile mechanical properties for all three materials.


2018 ◽  
Vol 237 ◽  
pp. 02014 ◽  
Author(s):  
Petr Vosynek ◽  
Tomas Navrat ◽  
Adela Krejbychova ◽  
David Palousek

Fused Deposition Modelling (FDM) is a fast-growing 3D printing technology. This technology expands rapidly even in households. Most users set print parameters only according to their own experience, regardless of the final mechanical properties. In order to predict the mechanical behaviour of the FDM-printed components, it is important to understand not only the properties of the printing material but also the effect of the printing process parameters on the mechanical properties. Components manufactured by FDM technology have an anisotropic structure, therefore the filling angle, fill shape, air gap, print orientation, and print temperature affect the resulting mechanical properties. This work deals with the change of mechanical properties depending on the setting of the filling angle, the shape of the filling, the orientation of the parts during printing, the influence of the material and pigment manufacturer.


2019 ◽  
pp. 089270571986462 ◽  
Author(s):  
Rupinder Singh ◽  
Ranvijay Kumar ◽  
Inderpreet Singh

The 3D printing of thermoplastic polymers (both virgin and reinforced with metal/ceramic particles) has been widely explored in recent past with fused deposition modelling (FDM) process. But hitherto very little has been reported on 3D printing of thermoplastics polymers with reinforcement of thermosetting polymers and ceramic particles. This article is an extension of work reported on thermo-mechanical investigations on waste thermosetting polymer bakelite and ceramic (silicon carbide and aluminium oxide) as reinforcement in recycled acrylonitrile butadiene styrene (ABS) thermoplastic matrix for sustainability. The study reports the experimental investigations on mechanical (tensile), morphological, surface hardness and thermal stability analysis of 3D printed functional prototype as tensile specimen (as per ASTM D 638). In the present case study, it has been ascertained that composition/proportion of thermoplastic matrix has a significant role in controlling the mechanical properties, whereas other input process parameters of FDM are insignificant. The results of the study suggest that thermosetting and ceramic-reinforced ABS thermoplastic-based 3D printed parts have mechanical properties at par with unreinforced ABS.


2018 ◽  
Vol 157 ◽  
pp. 06001
Author(s):  
Juraj Beniak ◽  
Peter Križan ◽  
Miloš Matúš ◽  
Michal Šajgalík

In the present time there are many different plastic materials and composite materials suitable for 3D printing by deposition of semi-melted material. The proper selection of correct material with suitable material properties is dependent on the situation how the produced 3D model should be used. If we need to take into account just the visual look of used material or also the mechanical properties as strength is important for loaded models for final use. The aim of this paper is to publish outputs of experimental testing for 3D models from selected materials with regards to mechanical properties of produced testing parts. Produced 3D models are from PLA biodegradable thermoplastic. Models are prepared on Fused Deposition Modelling (FDM) 3D printer. Testing is based on prepared full factors experiment with four factors on its two levels. Measured values are Tensile strength of PLA testing 3D models. In the same time there are gathered information regarding the 3D printing process and compared to measured tensile strength values for each sent of testing parts. All the measured data are statistically evaluated also by Analysis of Variance (ANOVA method).


2019 ◽  
Vol 26 (2) ◽  
pp. 381-389
Author(s):  
Morteza Behzadnasab ◽  
Ali Akbar Yousefi ◽  
Dariush Ebrahimibagha ◽  
Farahnaz Nasiri

Purpose With recent advances in additive manufacturing (AM), polymer-based three-dimensional (3D) printers are available for relatively low cost and have found their way even in domestic and educational uses. However, the optimum conditions for processing and post-processing of different materials are yet to be determined. The purpose of this paper is to examine the effects of printing temperature, pattern and annealing conditions on tensile strength and modulus of samples printed with polylactic acid (PLA). Design/methodology/approach This study focuses on fused deposition modelling according to ISO/ASTM 52900 material extrusion AM. To print parts with maximum mechanical properties, the printing variables must be optimised. To determine the printing and annealing condition on physical and mechanical properties of PLA-based parts, dogbone-shaped tensile samples were printed at four different nozzle temperatures and five different filling patterns embedded in a 3D printing software. The samples were further annealed at three different temperatures for three different time intervals. The mechanical properties were evaluated and the changes in mechanical properties were analysed with the help of rheometrical measurements. Findings The results showed that printing condition has a significant influence on final properties, for example, the strain at break value increases with increasing nozzle temperature from 34 to 56 MPa, which is close to the value of the injected sample, namely, 65 MPa. While tensile strength increases with printing temperature, the annealing process has negative effects on the mechanical properties of samples. Originality/value The authors observed that traditional findings in polymer science, for example, the relationship between processing and annealing temperature, must be re-evaluated when applied in 3D printing because of major differences in processing conditions resulting from the layer-by-layer manufacturing.


Sign in / Sign up

Export Citation Format

Share Document