scholarly journals Bio-Inspired Toughening of Composites in 3D-Printing

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4714
Author(s):  
Johannes Stögerer ◽  
Sonja Baumgartner ◽  
Alexander Hochwallner ◽  
Jürgen Stampfl

Natural materials achieve exceptional mechanical properties by relying on hierarchically structuring their internal architecture. In several marine species, layers of stiff and hard inorganic material are separated by thin compliant organic layers, giving their skeleton both stiffness and toughness. This phenomenon is fundamentally based on the periodical variation of Young’s modulus within the structure. In this study, alteration of mechanical properties is achieved through a layer-wise build-up of two different materials. A hybrid 3D-printing device combining stereolithography and inkjet printing is used for the manufacturing process. Both components used in this system, the ink for jetting and the resin for structuring by stereolithography (SLA), are acrylate-based and photo-curable. Layers of resin and ink are solidified separately using two different light sources (λ1 = 375 nm, λ2 = 455 nm). Three composite sample groups (i.e., one hybrid material, two control groups) are built. Measurements reveal an increase in fracture toughness and elongation at break of 70% and 22%, respectively, for the hybrid material compared to the control groups. Moreover, the comparison of the two control groups shows that the effect is essentially dependent on different materials being well contained within separated layers. This bio-inspired building approach increases fracture toughness of an inherently brittle matrix material.

2015 ◽  
Vol 825-826 ◽  
pp. 264-270
Author(s):  
Pascal Seffern ◽  
Lee Klein ◽  
Daniel Tischer ◽  
Antje Liersch

This paper focuses on an iterative algorithm for setting and attaining particle packing densities by means of different concentrations of a matrix material. The mechanical properties of a product, such as fracture toughness, bending strength and thermal conductivity are directly dependent on the amount of matrix material present. A tape cast friction layer was developed, in order to investigate the dependence of the parameters of the RRSB distribution on concentration of matrix material. The results verify the calculation method of a solid mixture and show a linear dependence of the RRSB particle-parameternon the concentration of matrix material (SiC-content).


2006 ◽  
Vol 312 ◽  
pp. 233-236 ◽  
Author(s):  
Ke Wang ◽  
Pascal Ogier ◽  
Chauhari Wuiwui Tjiu ◽  
Chaobin He

Alumina nano-crystals were dispersed in epoxy resin via different approaches. The effects of filler dispersion on the mechanical properties of the epoxy/alumina nanocomposites were studied. The fracture mechanisms are investigated using SEM. The results show that the Young’s modulus, tensile strength, elongation at break and fracture toughness of epoxy were improved dramatically with the incorporation of well-dispersed alumina nano-crystals. The poorly-dispersed nano-crystals, however, showed little effects on the mechanical properties.


Gels ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 115
Author(s):  
Kun Zhang ◽  
Yanen Wang ◽  
Qinghua Wei ◽  
Xinpei Li ◽  
Ying Guo ◽  
...  

Tissue-engineered skin grafts have long been considered to be the most effective treatment for large skin defects. Especially with the advent of 3D printing technology, the manufacture of artificial skin scaffold with complex shape and structure is becoming more convenient. However, the matrix material used as the bio-ink for 3D printing artificial skin is still a challenge. To address this issue, sodium alginate (SA)/carboxymethyl cellulose (CMC-Na) blend hydrogel was proposed to be the bio-ink for artificial skin fabrication, and SA/CMC-Na (SC) composite hydrogels at different compositions were investigated in terms of morphology, thermal properties, mechanical properties, and biological properties, so as to screen out the optimal composition ratio of SC for 3D printing artificial skin. Moreover, the designed SC composite hydrogel skin membranes were used for rabbit wound defeat repairing to evaluate the repair effect. Results show that SC4:1 blend hydrogel possesses the best mechanical properties, good moisturizing ability, proper degradation rate, and good biocompatibility, which is most suitable for 3D printing artificial skin. This research provides a process guidance for the design and fabrication of SA/CMC-Na composite artificial skin.


Author(s):  
Jun Liu ◽  
Katie E. Gunnison ◽  
Mehmet Sarikaya ◽  
Ilhan A. Aksay

The interfacial structure between the organic and inorganic phases in biological hard tissues plays an important role in controlling the growth and the mechanical properties of these materials. The objective of this work was to investigate these interfaces in nacre by transmission electron microscopy. The nacreous section of several different seashells -- abalone, pearl oyster, and nautilus -- were studied. Nacre is a laminated composite material consisting of CaCO3 platelets (constituting > 90 vol.% of the overall composite) separated by a thin organic matrix. Nacre is of interest to biomimetics because of its highly ordered structure and a good combination of mechanical properties. In this study, electron transparent thin sections were prepared by a low-temperature ion-beam milling procedure and by ultramicrotomy. To reveal structures in the organic layers as well as in the interfacial region, samples were further subjected to chemical fixation and labeling, or chemical etching. All experiments were performed with a Philips 430T TEM/STEM at 300 keV with a liquid Nitrogen sample holder.


Author(s):  
Gyeung Ho Kim ◽  
Mehmet Sarikaya ◽  
D. L. Milius ◽  
I. A. Aksay

Cermets are designed to optimize the mechanical properties of ceramics (hard and strong component) and metals (ductile and tough component) into one system. However, the processing of such systems is a problem in obtaining fully dense composite without deleterious reaction products. In the lightweight (2.65 g/cc) B4C-Al cermet, many of the processing problems have been circumvented. It is now possible to process fully dense B4C-Al cermet with tailored microstructures and achieve unique combination of mechanical properties (fracture strength of over 600 MPa and fracture toughness of 12 MPa-m1/2). In this paper, microstructure and fractography of B4C-Al cermets, tested under dynamic and static loading conditions, are described.The cermet is prepared by infiltration of Al at 1150°C into partially sintered B4C compact under vacuum to full density. Fracture surface replicas were prepared by using cellulose acetate and thin-film carbon deposition. Samples were observed with a Philips 3000 at 100 kV.


Author(s):  
K.L. More ◽  
R.A. Lowden

The mechanical properties of fiber-reinforced composites are directly related to the nature of the fiber-matrix bond. Fracture toughness is improved when debonding, crack deflection, and fiber pull-out occur which in turn depend on a weak interfacial bond. The interfacial characteristics of fiber-reinforced ceramics can be altered by applying thin coatings to the fibers prior to composite fabrication. In a previous study, Lowden and co-workers coated Nicalon fibers (Nippon Carbon Company) with silicon and carbon prior to chemical vapor infiltration with SiC and determined the influence of interfacial frictional stress on fracture phenomena. They found that the silicon-coated Nicalon fiber-reinforced SiC had low flexure strengths and brittle fracture whereas the composites containing carbon coated fibers exhibited improved strength and fracture toughness. In this study, coatings of boron or BN were applied to Nicalon fibers via chemical vapor deposition (CVD) and the fibers were subsequently incorporated in a SiC matrix. The fiber-matrix interfaces were characterized using transmission and scanning electron microscopy (TEM and SEM). Mechanical properties were determined and compared to those obtained for uncoated Nicalon fiber-reinforced SiC.


Alloy Digest ◽  
1994 ◽  
Vol 43 (11) ◽  

Abstract CARLSON ALLOYS C600 AND C600 ESR have excellent mechanical properties from sub-zero to elevated temperatures with excellent resistance to oxidation at high temperatures. It is a solid-solution alloy that can be hardened only by cold working. High strength at temperature is combined with good workability. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, and machining. Filing Code: Ni-470. Producer or source: G.O. Carlson Inc.


Alloy Digest ◽  
1965 ◽  
Vol 14 (4) ◽  

Abstract SUPERSTON 40 is an aluminum bronze containing 12% manganese and has good casting properties and excellent mechanical properties. It is recommended for any application where extreme corrosion resistance is required and where weldability is desired, such as propellers and marine equipment. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as fracture toughness, creep, and fatigue. It also includes information on corrosion resistance as well as casting, forming, heat treating, and machining. Filing Code: Cu-150. Producer or source: H. Kramer & Company.


Alloy Digest ◽  
2000 ◽  
Vol 49 (1) ◽  

Abstract Kaiser Aluminum Alloy 7050 has very high mechanical properties including tensile strength, high fracture toughness, and a high resistance to exfoliation and stress-corrosion cracking. The alloy is typically used in aircraft structural parts. This datasheet provides information on composition, physical properties, hardness, tensile properties, and shear strength as well as fracture toughness and fatigue. It also includes information on forming, heat treating, machining, and joining. Filing Code: AL-366. Producer or source: Tennalum, A Division of Kaiser Aluminum.


Alloy Digest ◽  
2013 ◽  
Vol 62 (5) ◽  

Abstract Virgo 17.4 PH is a 17Cr-4Ni-3Cu-0.3% Cb alloy that is precipitation hardening. It is martensitic and combines high mechanical properties with corrosion resistance. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-1145. Producer or source: Industeel USA, LLC.


Sign in / Sign up

Export Citation Format

Share Document